Do you want to publish a course? Click here

The Next Generation of Cherenkov Telescopes. A White Paper for the Italian National Institute for Astrophysics (INAF)

215   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Motivated by the recent challenging results from TeV astronomy, the VHE INAF community asked a group of them to write this White Paper to summarize the status and future of Cherenkov telescopes for gamma-ray astronomy and the INAF perspectives in this field. This document wants to review both the scientific topics and potential developments of the field as well as to point out both the interests and the capacities (scientific and technical) of the VHE astrophysics community in INAF. It is aimed at identifying the scientific and technological areas where INAF should focus its efforts and resources so that Italian researchers can achieve (or maintain) a leading position in this field.



rate research

Read More

The commercial SmallSat industry is booming and has developed numerous low-cost, capable satellite buses. SmallSats can be used as vehicles for technology development or to host science missions. Missions hosted on SmallSats can answer specific science questions that are difficult or impossible to answer with larger facilities, can be developed relatively quickly, serve to train engineering and scientists, and provide access to space for small institutions. SmallSats complement larger Astrophysics missions and allow the broader community to test new ideas at the bottom of the market, creating new capabilities which find their way to larger missions. Currently, NASA Astrophysics does not provide flight opportunities that would allow technology maturation of instrument systems or concepts of operations. Without flight opportunities to mature technologies, missions hosted on SmallSats are likely to be considered high risk, and face long odds being selected for implementation. Our primary suggestion is that NASA decouples science and technology for SmallSats by creating a technology-based SmallSat AO, modeled after the Earth Sciences InVEST call. Such AO would help reduce the new technology risk for science missions of any size. We also suggest that NASA provides additional science-driven SmallSat opportunities at the ~$12M funding level, provides access to new launchers free of charge to proposers, and re-structures the solicitation AOs so that SmallSats do not compete with other mission classes such as balloons.
257 - Robert G. Wagner 2009
We advocate support of research aimed at developing alternatives to the photomultiplier tube for photon detection in large astroparticle experiments such as gamma-ray and neutrino astronomy, and direct dark matter detectors. Specifically, we discuss the development of large area photocathode microchannel plate photomultipliers and silicon photomultipliers. Both technologies have the potential to exhibit improved photon detection efficiency compared to existing glass vacuum photomultiplier tubes.
Intergalactic space is believed to contain non-zero magnetic fields (the Intergalactic Magnetic Field: IGMF) which at scales of Mpc would have intensities below $10^{-9}$ G. Very high energy (VHE $>$100 GeV) gamma rays coming from blazars can produce e$^+$e$^-$ pairs when interacting with the Extragalactic Background Light (EBL) and the Cosmic Microwave Background, generating an electromagnetic cascade of Mpc scale. The IGMF may produce a detectable broadening of the emission beam that could lead to important constrains both on the IGMF intensity and its coherence length. Using the Monte Carlo-based Elmag code, we simulate the electromagnetic cascade corresponding to two detected TeV sources: PKS 2155-304 visible from the South and H1426+428 visible from the North. Assuming an EBL model and intrinsic spectral properties of the sources we obtain the spectral and angular distribution of photons when they arrive at Earth. We include the response of the next generation Cherenkov telescopes by using simplified models for CTA (Cherenkov Telescope Array)-south and CTA-north based on a full simulation of each array performance. Combining the instrument properties with the simulated source fluxes, we calculate the telescope point spread function for null and non-null IGMF intensities and develop a method to test the statistical feasibility of detecting IGMF imprints by comparing the resulting angular distributions. Our results show that for the analysed source PKS 2155-304 corresponding to the southern site, CTA should be able to detect IGMF with intensities stronger than 10$^{-14.5}$G within an observation time of $sim$100 hours.
117 - V. V. Bugaev 2007
We estimate the limiting angular resolution and detection area for an array of 3 large-aperture Imaging Atmospheric Cherenkov Telescopes. We consider an idealized IACT system in order to understand the limitations imposed by the intrinsic nature of the atmospheric showers and geometry of the detector configuration. The idealization includes the assumptions of a perfect optical system and the absence of the night sky background with the goal of finding the optimum camera geometry and array configuration independent of detailed assumptions about the telescope design. The showers are simulated using the ALTAI code for the altitude of 2700 m corresponding to one of possible future sites for a new northern-hemisphere array. The optimal design depends on the target energy range; for each energy we vary both the cell length (telescope spacing) and the image processing parameters in order to maximize the signal-to-noise ratio. We then present the resulting values of the detection area and the angular resolution for this energy dependent optimization. We discuss the dependence of these quantities on the field of view of the telescopes and pixel size of the camera.
The Cherenkov Telescope Array (CTA) is a large collaborative effort aimed at the design and operation of an observatory dedicated to the VHE gamma-ray astrophysics in the energy range 30 GeV-100 TeV, which will improve by about one order of magnitude the sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS). In order to achieve such improved performance, for both the northern and southern CTA sites, four units of 23m diameter Large Size Telescopes (LSTs) will be deployed close to the centre of the array with telescopes separated by about 100m. A larger number (about 25 units) of 12m Medium Size Telescopes (MSTs, separated by about 150m), will cover a larger area. The southern site will also include up to 24 Schwarzschild-Couder dual-mirror medium-size Telescopes (SCTs) with the primary mirror diameter of 9.5m. Above a few TeV, the Cherenkov light intensity is such that showers can be detected even well outside the light pool by telescopes significantly smaller than the MSTs. To achieve the required sensitivity at high energies, a huge area on the ground needs to be covered by Small Size Telescopes (SSTs) with a FOV of about 10 deg and an angular resolution of about 0.2 deg, making the dual-mirror configuration very effective. The SST sub-array will be composed of 50-70 telescopes with a mirror area of about 5-10 square meters and about 300m spacing, distributed across an area of about 10 square kilometers. We will focus on the innovative solution for the optical design of the medium and small size telescopes based on a dual-mirror configuration. This layout will allow us to reduce the dimension and the weight of the camera at the focal plane of the telescope, to adopt SiPMs as light detectors thanks to the reduced plate-scale, and to have an optimal imaging resolution on a wide FOV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا