Do you want to publish a course? Click here

Search for the Kaluza-Klein Dark Matter with the AMANDA/IceCube Detectors

132   0   0.0 ( 0 )
 Added by Matthias Danninger
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A viable WIMP candidate, the lightest Kaluza-Klein particle (LKP), is motivated by theories of universal extra dimensions. LKPs can scatter off nuclei in large celestial bodies, like the Sun, and become trapped within their deep gravitational wells, leading to high WIMP densities in the objects core. Pair-wise LKP annihilation could lead to a detectable high energy neutrino flux from the center of the Sun in the IceCube neutrino telescope. We describe an ongoing search for Kaluza-Klein solar WIMPs with the AMANDA-II data for the year 2001, and also present a UED dark matter sensitivity projected to 180 days from a study of data taken with the combined AMANDA II and IceCube detector in the year 2007. A competitive sensitivity, compared to existing direct and indirect search experiments, on the spin-dependent cross section of the LKP on protons is also presented.



rate research

Read More

A search for an excess of muon-neutrinos from dark matter annihilations in the Sun has been performed with the AMANDA-II neutrino telescope using data collected in 812 days of livetime between 2001 and 2006 and 149 days of livetime collected with the AMANDA-II and the 40-string configuration of IceCube during 2008 and early 2009. No excess over the expected atmospheric neutrino background has been observed. We combine these results with the previously published IceCube limits obtained with data taken during 2007 to obtain a total livetime of 1065 days. We provide an upper limit at 90% confidence level on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 50 GeV-5000 GeV. We also derive a limit on the neutralino-proton spin-dependent and spin-independent cross section. The limits presented here improve the previous results obtained by the collaboration between a factor of two and five, as well as extending the neutralino masses probed down to 50 GeV. The spin-dependent cross section limits are the most stringent so far for neutralino masses above 200 GeV, and well below direct search results in the mass range from 50 GeV to 5 TeV.
In Universal Extra Dimension models, the lightest Kaluza-Klein (KK) particle is generically the first KK excitation of the photon and can be stable, serving as particle dark matter. We calculate the thermal relic abundance of the KK photon for a general mass spectrum of KK excitations including full coannihilation effects with all (level one) KK excitations. We find that including coannihilation can significantly change the relic abundance when the coannihilating particles are within about 20% of the mass of the KK photon. Matching the relic abundance with cosmological data, we find the mass range of the KK photon is much wider than previously found, up to about 2 TeV if the masses of the strongly interacting level one KK particles are within five percent of the mass of the KK photon. We also find cases where several coannihilation channels compete (constructively and destructively) with one another. The lower bound on the KK photon mass, about 540 GeV when just right-handed KK leptons coannihilate with the KK photon, relaxes upward by several hundred GeV when coannihilation with electroweak KK gauge bosons of the same mass is included.
With the observation of high-energy astrophysical neutrinos by the IceCube Neutrino Observatory, interest has risen in models of PeV-mass decaying dark matter particles to explain the observed flux. We present two dedicated experimental analyses to test this hypothesis. One analysis uses six years of IceCube data focusing on muon neutrino track events from the Northern Hemisphere, while the second analysis uses two years of cascade events from the full sky. Known background components and the hypothetical flux from unstable dark matter are fitted to the experimental data. Since no significant excess is observed in either analysis, lower limits on the lifetime of dark matter particles are derived: We obtain the strongest constraint to date, excluding lifetimes shorter than $10^{28},$s at $90%$ CL for dark matter masses above $10,$TeV.
The Milky Way is expected to be embedded in a halo of dark matter particles, with the highest density in the central region, and decreasing density with the halo-centric radius. Dark matter might be indirectly detectable at Earth through a flux of stable particles generated in dark matter annihilations and peaked in the direction of the Galactic Center. We present a search for an excess flux of muon (anti-) neutrinos from dark matter annihilation in the Galactic Center using the cubic-kilometer-sized IceCube neutrino detector at the South Pole. There, the Galactic Center is always seen above the horizon. Thus, new and dedicated veto techniques against atmospheric muons are required to make the southern hemisphere accessible for IceCube. We used 319.7 live-days of data from IceCube operating in its 79-string configuration during 2010 and 2011. No neutrino excess was found and the final result is compatible with the background. We present upper limits on the self-annihilation cross-section, $left<sigma_mathrm{A} vright>$, for WIMP masses ranging from 30 GeV up to 10 TeV, assuming cuspy (NFW) and flat-cored (Burkert) dark matter halo profiles, reaching down to $simeq 4 cdot 10^{-24}$ cm$^3$ s$^{-1}$, and $simeq 2.6 cdot 10^{-23}$ cm$^3$ s$^{-1}$ for the $ uoverline{ u}$ channel, respectively.
Self-annihilating or decaying dark matter in the Galactic halo might produce high energy neutrinos detectable with neutrino telescopes. We have conducted a search for such a signal using 276 days of data from the IceCube 22-string configuration detector acquired during 2007 and 2008. The effect of halo model choice in the extracted limit is reduced by performing a search that considers the outer halo region and not the Galactic Center. We constrain any large scale neutrino anisotropy and are able to set a limit on the dark matter self-annihilation cross section of <sigma_{A}v> simeq 10^{-22} cm^3/s for WIMP masses above 1 TeV, assuming a monochromatic neutrino line spectrum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا