No Arabic abstract
The structure of the 18O nucleus at excitation energies above the alpha decay threshold was studied using 14C+alpha resonance elastic scattering. A number of states with large alpha reduced widths have been observed, indicating that the alpha-cluster degree of freedom plays an important role in this N not equal Z nucleus. However, the alpha-cluster structure of this nucleus is very different from the relatively simple pattern of strong alpha-cluster quasi-rotational bands in the neighboring 16O and 20Ne nuclei. A 0+ state with an alpha reduced width exceeding the single particle limit was identified at an excitation energy of 9.9+/-0.3 MeV. We discuss evidence that states of this kind are common in light nuclei and give possible explanations of this feature.
Charge topology of fragmentation of 1.2 A GeV $^7$Be nuclei in nuclear track emulsion is presented.The dissociation channels $^4$He + $^3$He, 2$^3$He+ n, $^4$He + 2$^1$H are considered in detail. It is established that the events $^6$Be + n amount about to 27 % in the channel $^4$He + 2$^1$H.
The use of emulsions for studying nuclear clustering in light nucleus fragmentation processes at energies higher than 1A GeV is discussed. New results on the topologies of relativistic Li-7 and B-10 nucleus fragmentation in peripheral interactions are given. A program of research of the cluster structure in stable and radioactive nuclei is suggested.
The fragmentation of quasi-projectiles from the nuclear reaction $^{40}$Ca+$^{12}$C at 25 MeV per nucleon bombarding energy was used to produce $alpha$-emission sources. From a careful selection of these sources provided by a complete detection and from comparisons with models of sequential and simultaneous decays, evidence in favor of $alpha$-particle clustering from excited $^{16}O$, $^{20}Ne$ and $^{24}Mg$ is reported.
Spectra of coincident charged particles from the reactions induced by a 52 MeV 7Li beam incident on a beryllium target were measured. Strong contributions of the 7Li quasi-free scattering off the alpha-cluster in 9Be nucleus were observed. This observation supports the conclusions from the study of complete fusion of weakly bound light nuclei at low energies that the fragility of the nuclei makes their fusion less probable.
Cross sections for the 168Yb(alpha,gamma)172Hf and 168Yb(alpha,n)171$Hf reactions were measured by means of the activation method using alpha particles with energies between 12.9 MeV and 15.1 MeV. The spectroscopy of the gamma rays emitted by the reaction products was performed using three different HPGe detector types, namely clover-type high-purity germanium detectors, a low-energy photon spectrometer detector, and a coaxial high-purity germanium detector. The results were compared to Hauser-Feshbach statistical model calculations. Within certain assumptions, astrophysical conclusions could be drawn concerning the production of the p nucleus 168Yb. The data in this work can serve as a contribution to the current very fragmentary experimental data base for charged-particle induced reactions. In addition, the absolute intensity for nine gamma-ray transitions following the electron capture decay of 171Hf could be derived.