Do you want to publish a course? Click here

Mode expansion and Bragg filtering enable a high-fidelity fiber-based photon-pair source

103   0   0.0 ( 0 )
 Added by Alexander Ling
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the development of a fiber-based single spatial mode source of photon-pairs where the efficiency of extracting photon-pairs is improved over a previous source [18] through the use of fiber-end expansion and Bragg filters. This improvement in efficiency enabled a spectrally bright and pure photon-pair source having a small second-order correlation function (0.03) and a raw spectral brightness of 44,700 pairs/(s nm mW). The source can be configured to generate entangled photon-pairs,characterized via optimal and minimal quantum state tomography, to have a fidelity of 97% and tangle of 92%, without subtracting any background.



rate research

Read More

In this work we experimentally demonstrate a photon-pair source with correlations in the frequency and polarization degrees of freedom. We base our source on the spontaneous four-wave mixing (SFWM) process in a photonic crystal fiber. We show theoretically that the two-photon state is the coherent superposition of up to six distinct SFWM processes, each corresponding to a distinct combination of polarizations for the four waves involved and giving rise to an energy-conserving pair of peaks. Our experimental measurements, both in terms of single and coincidence counts, confirm the presence of these pairs of peaks, while we also present related numerical simulations with excellent experiment-theory agreement. We explicitly show how the pump frequency and polarization may be used to effectively control the signal-idler photon-pair properties, defining which of the six processes can participate in the overall two-photon state and at which optical frequencies. We analyze the signal-idler correlations in frequency and polarization, and in terms of fiber characterization, we input the SFWM-peak experimental data into a genetic algorithm which successfully predicts the values of the parameters that characterize the fiber cross section, as well as predict the particular SFWM process associated with a given pair of peaks. We believe our work will help advance the exploitation of photon-pair correlations in the frequency and polarization degrees of freedom.
Photon pairs produced by the pulse-pumped nonlinear parametric processes have been a workhorse of quantum information science. Engineering the spectral property of the photon pairs is crucial in practical applications. In this article, we demonstrate a programmable photon pair source by exploiting a two-stage nonlinear interferometer with a phase-control device. The phase-control device introduces phase shifts by a programmable phase function that can be arbitrarily defined. With a properly designed phase function, the output spectrum of the source can be freely customized and changed without replacing any hardware component in the system. In addition to demonstrating the generation of photon pairs with factorable, positively-correlated, and negatively-correlated spectra, respectively, we show that the output of the source can be tailored into multi-channel spectrally factorable photon pairs without sacrificing efficiency. Such a source, having the ability to modify the spectrum of the photon pairs at will according to the chosen application, is a powerful tool for quantum information science.
Compared to traditional nonlinear optical crystals, like BaB$_2$O$_4$, KTiOPO$_4$ or LiNbO$_3$, semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials. This is also the case for Bragg-reflection waveguides (BRW) targeting parametric down-conversion (PDC) to the telecom C-band. The large nonlinear coefficient of the AlGaAs alloy and the strong confinement of the light enable extremely bright integrated photon pair sources. However, under certain circumstances, a significant amount of detrimental broadband photoluminescence has been observed in BRWs. We show that this is mainly a result of linear absorption near the core and subsequent radiative recombination of electron-hole pairs at deep impurity levels in the semiconductor. For PDC with BRWs, we conclude that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns. We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values. Such measures enable us to increase the average pump power and/or the repetition rate, which makes integrated photon pair sources with on-chip multi-gigahertz pair rates feasible.
We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in F. Kaiser et al. (2013 Laser Phys. Lett. 10, 045202).
Here we demonstrate, for the first time, violation of Bells inequality using a triggered quantum dot photon-pair source without post-selection. Furthermore, the fidelity to the expected Bell state can be increased above 90% using temporal gating to reject photons emitted at times when collection of uncorrelated light is more probable. A direct measurement of a CHSH Bell inequality is made showing a clear violation, highlighting that a quantum dot entangled photon source is suitable for communication exploiting non-local quantum correlations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا