Do you want to publish a course? Click here

Programmable photon pair source

85   0   0.0 ( 0 )
 Added by Liang Cui
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Photon pairs produced by the pulse-pumped nonlinear parametric processes have been a workhorse of quantum information science. Engineering the spectral property of the photon pairs is crucial in practical applications. In this article, we demonstrate a programmable photon pair source by exploiting a two-stage nonlinear interferometer with a phase-control device. The phase-control device introduces phase shifts by a programmable phase function that can be arbitrarily defined. With a properly designed phase function, the output spectrum of the source can be freely customized and changed without replacing any hardware component in the system. In addition to demonstrating the generation of photon pairs with factorable, positively-correlated, and negatively-correlated spectra, respectively, we show that the output of the source can be tailored into multi-channel spectrally factorable photon pairs without sacrificing efficiency. Such a source, having the ability to modify the spectrum of the photon pairs at will according to the chosen application, is a powerful tool for quantum information science.



rate research

Read More

We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)$^{-1}$ is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks.
Here we demonstrate, for the first time, violation of Bells inequality using a triggered quantum dot photon-pair source without post-selection. Furthermore, the fidelity to the expected Bell state can be increased above 90% using temporal gating to reject photons emitted at times when collection of uncorrelated light is more probable. A direct measurement of a CHSH Bell inequality is made showing a clear violation, highlighting that a quantum dot entangled photon source is suitable for communication exploiting non-local quantum correlations.
We report a fully guided-wave source of polarisation entangled photons based on a periodically poled lithium niobate waveguide mounted in a Sagnac interferometer. We demonstrate the sources quality by converting polarisation entanglement to postselection-free energy-time entanglement for which we obtain a near-optimal $S$-parameter of $2.75 pm 0.02$, i.e. a violation of the Bell inequality by more than 35 standard deviations. The exclusive use of guided-wave components makes our source compact and stable which is a prerequisite for increasingly complex quantum applications. Additionally, our source offers a great versatility in terms of photon pair emission spectrum and generated quantum state, making it suitable for a broad range of quantum applications such as cryptography and metrology. In this sense, we show how to use our source for chromatic dispersion measurements in optical fibres which opens new avenues in the field of quantum metrology.
We present a 1 GHz-clocked, maximally entangled and on-demand photon pair source based on droplet etched GaAs quantum dots using two-photon excitation. By employing these GaP microlensenhanced devices in conjunction with their substantial brightness, raw entanglement fidelities of up to $0.95 pm 0.01$ and post-selected photon indistinguishabilities of up to $0.93 pm 0.01$, the suitability for quantum repeater based long range quantum entanglement distribution schemes is shown. Comprehensive investigations of a complete set of polarization selective two-photon correlations as well as time resolved Hong-Ou-Mandel interferences facilitate innovative methods that determine quantities such as photon extraction and excitation efficiencies as well as pure dephasing directly - opposed to commonly employed indirect techniques.
We present a versatile, high-brightness, guided-wave source of polarization entangled photons, emitted at a telecom wavelength. Photon-pairs are generated using an integrated type-0 nonlinear waveguide, and subsequently prepared in a polarization entangled state via a stabilized fiber interferometer. We show that the single photon emission wavelength can be tuned over more than 50 nm, whereas the single photon spectral bandwidth can be chosen at will over more than five orders of magnitude (from 25 MHz to 4 THz). Moreover, by performing entanglement analysis, we demonstrate a high degree of control of the quantum state via the violation of the Bell inequalities by more than 40 standard deviations. This makes this scheme suitable for a wide range of quantum optics experiments, ranging from fundamental research to quantum information applications. We report on details of the setup, as well as on the characterization of all included components, previously outlined in F. Kaiser et al. (2013 Laser Phys. Lett. 10, 045202).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا