Do you want to publish a course? Click here

Beurlings free boundary value problem in conformal geometry

153   0   0.0 ( 0 )
 Added by Oliver Roth
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

The subject of this paper is Beurlings celebrated extension of the Riemann mapping theorem cite{Beu53}. Our point of departure is the observation that the only known proof of the Beurling-Riemann mapping theorem contains a number of gaps which seem inherent in Beurlings geometric and approximative approach. We provide a complete proof of the Beurling-Riemann mapping theorem by combining Beurlings geometric method with a number of new analytic tools, notably $H^p$-space techniques and methods from the theory of Riemann-Hilbert-Poincare problems. One additional advantage of this approach is that it leads to an extension of the Beurling-Riemann mapping theorem for analytic maps with prescribed branching. Moreover, it allows a complete description of the boundary regularity of solutions in the (generalized) Beurling-Riemann mapping theorem extending earlier results that have been obtained by PDE techniques. We finally consider the question of uniqueness in the extended Beurling-Riemann mapping theorem.



rate research

Read More

We prove a version of the Arnold conjecture for Lagrangian submanifolds of conformal symplectic manifolds: a Lagrangian $L$ which has non-zero Morse-Novikov homology for the restriction of the Lee form $beta$ cannot be disjoined from itself by a $C^0$-small Hamiltonian isotopy. Furthermore for generic such isotopies the number of intersection points equals at least the sum of the free Betti numbers of the Morse-Novikov homology of $beta$. We also give a short exposition of conformal symplectic geometry, aimed at readers who are familiar with (standard) symplectic or contact geometry.
66 - Anton Baranov 2015
We study two geometric properties of reproducing kernels in model spaces $K_theta$where $theta$ is an inner function in the disc: overcompleteness and existence of uniformly minimalsystems of reproducing kernels which do not contain Riesz basic sequences. Both of these properties are related to the notion of the Ahern--Clark point. It is shown that uniformly minimal non-Riesz$ $ sequences of reproducing kernelsexist near each Ahern--Clark point which is not an analyticity point for $theta$, whileovercompleteness may occur only near the Ahern--Clark points of infinite orderand is equivalent to a zero localization property. In this context the notion ofquasi-analyticity appears naturally, and as a by-product of our results we give conditions in thespirit of Ahern--Clark for the restriction of a model space to a radius to be a class ofquasi-analyticity.
We study the Weil-Petersson geometry for holomorphic families of Riemann Surfaces equipped with the unique conical metric of constant curvature -1.
For a non-empty compact set $E$ in a proper subdomain $Omega$ of the complex plane, we denote the diameter of $E$ and the distance from $E$ to the boundary of $Omega$ by $d(E)$ and $d(E,partialOmega),$ respectively. The quantity $d(E)/d(E,partialOmega)$ is invariant under similarities and plays an important role in Geometric Function Theory. In the present paper, when $Omega$ has the hyperbolic distance $h_Omega(z,w),$ we consider the infimum $kappa(Omega)$ of the quantity $h_Omega(E)/log(1+d(E)/d(E,partialOmega))$ over compact subsets $E$ of $Omega$ with at least two points, where $h_Omega(E)$ stands for the hyperbolic diameter of the set $E.$ We denote the upper half-plane by $mathbb{H}$. Our main results claim that $kappa(Omega)$ is positive if and only if the boundary of $Omega$ is uniformly perfect and that the inequality $kappa(Omega)leqkappa(mathbb{H})$ holds for all $Omega,$ where equality holds precisely when $Omega$ is convex.
In this paper we establish a connection between free boundary minimal surfaces in a ball in $mathbb{R}^3$ and free boundary cones arising in a one-phase problem. We prove that a doubly connected minimal surface with free boundary in a ball is a catenoid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا