We consider the theory of Kondo effect and Fano factor energy dependence for magnetic impurity (Co) on graphene. We have performed a first principles calculation and find that the two dimensional $E_1$ representation made of $d_{xz},d_{yz}$ orbitals is likely to be responsible for the hybridization and ultimately Kondo screening for cobalt on graphene. There are few high symmetry sites where magnetic impurity atom can be adsorbed. For the case of Co atom in the middle of hexagon of carbon lattice we find anomalously large Fano $q$-factor, $qapprox 80$ and strongly suppressed coupling to conduction band. This anomaly is a striking example of quantum mechanical interference related to the Berry phase inherent to graphene band structure.
Linear conductance across a large quantum dot via a single level e_0 with large hybridization to the contacts is strongly sensitive to quasi-bound states localized in the dot and weakly coupled to e_0. It oscillates with the gate voltage due to interference of the Fano type. At low temperature and Coulomb blockade, Kondo correlations damp the oscillations on an extended range of gate voltage values, by freezing the occupancy of the e_0 level itself. As a consequence, antiresonances of Fano origin are washed out. The results are in good correspondence with experimental data for a large quantum dot in the semi-open regime.
We study a double-nanowire setup proximity coupled to an $s$-wave superconductor and search for the bulk signatures of the topological phase transition that can be observed experimentally, for example, with an STM tip. Three bulk quantities, namely, the charge, the spin polarization, and the pairing amplitude of intrawire superconductivity are studied in this work. The spin polarization and the pairing amplitude flip sign as the system undergoes a phase transition from the trivial to the topological phase. In order to identify promising ways to observe bulk signatures of the phase transition in transport experiments, we compute the spin current flowing between a local spin-polarized probe, such as an STM tip, and the double-nanowire system in the Keldysh formalism. We find that the spin current contains information about the sign flip of the bulk spin polarization and can be used to determine the topological phase transition point.
The Fano-Kondo effect in zero-bias conductance is studied based on a theoretical model for the T-shaped quantum dot by the finite temperature density matrix renormalization group method. The modification of the two Fano line shapes at much higher temperatures than the Kondo temperature is also investigated by the effective Fano parameter estimated as a fitting parameter.
This is a popular review of some recent investigations of the Kondo effect in a variety of mesoscopic systems. After a brief introduction, experiments are described where a scanning tunneling microscope measures the surroundings of a magnetic impurity on a metal surface. In another set of experiments, Kondo effect creates a number of characteristic features in the electron transport through small electronic devices -- semiconductor quantum dots or single-molecule transistors which can be tuned by applying appropriate gate voltages. The article contains 5 color figures, photo of Jun Kondo, but no equations.
Transport through an Anderson junction (two macroscopic electrodes coupled to an Anderson impurity) is dominated by a Kondo peak in the spectral function at zero temperature. The exact single-particle Kohn-Sham potential of density functional theory reproduces the linear transport exactly, despite the lack of a Kondo peak in its spectral function. Using Bethe ansatz techniques, we calculate this potential exactly for all coupling strengths, including the cross-over from mean-field behavior to charge quantization caused by the derivative discontinuity. A simple and accurate interpolation formula is also given.