No Arabic abstract
We study critical point finite-size effects on the behavior of susceptibility of a film placed in the Earths gravitational field. The fluid-fluid and substrate-fluid interactions are characterized by van der Waals-type power law tails, and the boundary conditions are consistent with bounding surfaces that strongly prefer the liquid phase of the system. Specific predictions are made with respect to the behavior of $^3$He and $^4$He films in the vicinity of their respective liquid-gas critical points. We find that for all film thicknesses of current experimental interest the combination of van der Waals interactions and gravity leads to substantial deviations from the behavior predicted by models in which all interatomic forces are very short ranged and gravity is absent. In the case of a completely short-ranged system exact mean-field analytical expressions are derived, within the continuum approach, for the behavior of both the local and the total susceptibilities.
We study critical point finite-size effects in the case of the susceptibility of a film in which interactions are characterized by a van der Waals-type power law tail. The geometry is appropriate to a slab-like system with two bounding surfaces. Boundary conditions are consistent with surfaces that both prefer the same phase in the low temperature, or broken symmetry, state. We take into account both interactions within the system and interactions between the constituents of the system and the material surrounding it. Specific predictions are made with respect to the behavior of a $^3$He and $^4$He films in the vicinity of their respective liquid-vapor critical points.
Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model, including the critical point, have been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.
We develop a scaling theory for the finite-size critical behavior of the microcanonical entropy (density of states) of a system with a critically-divergent heat capacity. The link between the microcanonical entropy and the canonical energy distribution is exploited to establish the former, and corroborate its predicted scaling form, in the case of the 3d Ising universality class. We show that the scaling behavior emerges clearly when one accounts for the effects of the negative background constant contribution to the canonical critical specific heat. We show that this same constant plays a significant role in determining the observed differences between the canonical and microcanonical specific heats of systems of finite size, in the critical region.
The superfluid/normal-fluid interface of liquid 4He is investigated in gravity on earth where a small heat current Q flows vertically upward or downward. We present a local space- and time-dependent renormalization-group (RG) calculation based on model F which describes the dynamic critical effects for temperatures T near the superfluid transition T_lambda. The model-F equations are rewritten in a dimensionless renormalized form and solved numerically as partial differential equations. Perturbative corrections are included for the spatially inhomogeneous system within a self-consistent one-loop approximation. The RG flow parameter is determined locally as a function of space and time by a constraint equation which is solved by a Newton iteration. As a result we obtain the temperature profile of the interface. Furthermore we calculate the average order parameter <psi>, the correlation length xi, the specific heat C_Q and the thermal resistivity rho_T where we observe a rounding of the critical singularity by the gravity and the heat current. We compare the thermal resistivity with an experiment and find good qualitative agreement. Moreover we discuss our previous approach for larger heat currents and the self-organized critical state and show that our theory agrees with recent experiments in this latter regime.
Exact results of the finite-size behavior of the susceptibility in three-dimensional mean spherical model films under Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions are presented. The corresponding scaling functions are explicitly derived and their asymptotics close to, above and below the bulk critical temperature $T_c$ are obtained. The results can be incorporated in the framework of the finite-size scaling theory where the exponent $lambda$ characterizing the shift of the finite-size critical temperature with respect to $T_c$ is smaller than $1/ u$, with $ u$ being the critical exponent of the bulk correlation length.