Do you want to publish a course? Click here

Absolute dimensions of solar-type eclipsing binaries. II. V636 Centauri: A 1.05 Msun primary with an active, cool, oversize 0.85 Msun secondary

141   0   0.0 ( 0 )
 Added by Jens Viggo Clausen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The influence of stellar activity on the fundamental properties of stars around and below 1 Msun is not well understood. We aim to determine absolute dimensions and abundances for the solar-type detached eclipsing binary V636 Cen. The results are based on uvby light curves, uvby-beta standard photometry, radial velocity observations, and high-resolution spectra. Masses and radii that are precise to 0.5% have been established for the components of V636 Cen. The 0.85 Msun secondary component is moderately active with starspots and CaII H and K emission, and the 1.05 Msun primary shows signs of activity as well, but at a much lower level. We derive a [Fe/H] abundance of -0.20+/-0.08 and similar abundances for Si, Ca, Ti, V, Cr, Co, and Ni. Corresponding solar-scaled stellar models are unable to reproduce V636 Cen, especially its secondary component, which is ~10% larger and ~400 K cooler than predicted. Models adopting significantly lower mixing-length parameters l/H_p remove these discrepancies, seen also for other solar-type binary components. For the observed [Fe/H], Claret models for l/H_p = 1.4 (primary) and 1.0 (secondary) reproduce the components of V636 Cen at a common age of 1.35 Gyr. V636 Cen and 10 other well-studied inactive and active solar-type binaries suggest that chromospheric activity, and its effect on envelope convection, is likely to cause radius and temperature discrepancies, which can be removed by adjusting the model mixing length parameters downwards. Noting this, the sample may also lend support to theoretical 2D radiation hydrodynamics studies, which predict a slight decrease of the mixing length parameter with increasing temperature/mass for inactive main sequence stars.



rate research

Read More

We present a detailed study of the G0V detached eclipsing binary EW Ori, based on new photometric and spectroscopic observations. Masses and radii that are precise to 0.9% and 0.5%, respectively, have been established for both components. The 1.12 Msun secondary component reveals weak Ca II H and K emission and is probably mildly active; no signs of activity are seen for the 1.17 Msun primary. We derive an [Fe/H] abundance of +0.05 +/- 0.09 and similar abundances for Si, Ca, Sc, Ti, Cr, and Ni. Yonsai-Yale and Granada solar-scaled evolutionary models for the observed metal abundance reproduce the components fairly well at an age of approx. 2 Gyr. Perfect agreement is, however, obtained at an age of 2.3 Gyr for a combination of a) a slight downwards adjustment of the envelope mixing length parameter for the secondary, as seen for other active solar-type stars, and b) a slightly lower helium content than prescribed by the Y-Z relations adopted for the standard model grids. The orbit is eccentric (e = 0.0758 +/- 0.0020), and apsidal motion with a 62% relativistic contribution has been detected. The apsidal motion period is U = 16300 +/- 3900 yr, and the inferred mean central density concentration coefficient, log(k_2) = -1.66 +/- 0.30, agrees marginally with model predictions. The measured rotational velocities, 9.0 +/- 0.7 (primary) and 8.8 +/- 0.6 (secondary) km/s, are in agreement with both the synchronous velocities and the theoretically predicted pseudo-synchronous velocities. Finally, the distance (175 +/- 7 pc), age, and center-of mass velocity (6 km/s) exclude suggested membership of the open cluster Collinder 70. EW Ori now belongs to the small group of solar-type eclipsing binaries with well-established astrophysical properties.
We report the discovery and characterisation of a new M-dwarf binary, with component masses and radii of M1 = 0.244 -0.003/+0.003 Msun, R1 = 0.261 -0.009/+0.006 Rsun, M2 = 0.179 -0.001/+0.002 Msun, R2 = 0.218 -0.011/+0.007 Rsun, and orbital period of ~4.1 days. The M-dwarf binary HATS551-027 (LP 837-20) was identified as an eclipsing binary by the HATSouth survey, and characterised by a series of high precision photometric observations of the eclipse events, and spectroscopic determinations of the atmospheric parameters and radial velocity orbits. HATS551-027 is one of few systems with both stellar components lying in the fully-convective regime of very low mass stars, and can serve as a test for stellar interior models. The radius of HATS551-027A is consistent with models to 1 sigma, whilst HATS551-027B is inflated by 9% at 2 sigma significance. We measure the effective temperatures for the two stellar components to be Teff,1 = 3190 +/- 100 K and Teff,2 = 2990+/-110 K, both are slightly cooler than theoretical models predict, but consistent with other M-dwarfs of similar masses that have previously been studied. We also measure significant Halpha emission from both components of the binary system, and discuss this in the context of the correlation between stellar activity and the discrepancies between the observed and model temperatures.
V1130 Tau is a bright (m_V = 6.56), nearby (71 +/- 2 pc) detached system with a circular orbit (P = 0.80d). The components are deformed with filling factors above 0.9. Their masses and radii have been established to 0.6-0.7%. We derive a [Fe/H] abundance of -0.25 +/- 0.10. The measured rotational velocities, 92.4 +/- 1.1 (primary) and 104.7 +/- 2.7 (secondary) km/s, are in fair agreement with synchronization. The larger 1.39 Msun secondary component has evolved to the middle of the main-sequence band and is slightly cooler than the 1.31 Msun primary. Yonsai-Yale, BaSTI, and Granada evolutionary models for the observed metal abundance and a normal He content of Y = 0.25-0.26, marginally reproduce the components at ages between 1.8 and 2.1 Gyr. All such models are, however, systematically about 200 K hotter than observed and predict ages for the more massive component, which are systematically higher than for the less massive component. These trends can not be removed by adjusting the amount of core overshoot or envelope convection level, or by including rotation in the model calculations. They may be due to proximity effects in V1130 Tau, but on the other hand, we find excellent agreement for 2.5-2.8 Gyr Granada models with a slightly lower Y of 0.23-0.24. V1130 Tau is a valuable addition to the very few well-studied 1-2 Msun binaries with component(s) in the upper half of the main-sequence band, or beyond. The stars are not evolved enough to provide new information on the dependence of core overshoot on mass (and abundance), but might - together with a larger sample of well-detached systems - be useful for further tuning of the helium enrichment law.
We report spectroscopic observations of the 2.63 day, detached, F-type main-sequence eclipsing binary V2154 Cyg. We use our observations together with existing $uvby$ photometric measurements to derive accurate absolute masses and radii for the stars good to better than 1.5%. We obtain masses of M1 = 1.269 +/- 0.017 M(Sun) and M2 = 0.7542 +/- 0.0059 M(Sun), radii of R1 = 1.477 +/- 0.012 R(Sun) and R2 = 0.7232 +/- 0.0091 R(Sun), and effective temperatures of 6770 +/- 150 K and 5020 +/- 150 K for the primary and secondary stars, respectively. Both components appear to have their rotations synchronized with the motion in the circular orbit. A comparison of the properties of the primary with current stellar evolution models gives good agreement for a metallicity of [Fe/H] = -0.17, which is consistent with photometric estimates, and an age of about 2.2 Gyr. On the other hand, the K2 secondary is larger than predicted for its mass by about 4%. Similar discrepancies are known to exist for other cool stars, and are generally ascribed to stellar activity. The system is in fact an X-ray source, and we argue that the main site of the activity is the secondary star. Indirect estimates give a strength of about 1 kG for the surface magnetic field on that star. A previously known close visual companion to V2154 Cyg is shown to be physically bound, making the system a hierarchical triple.
We present a detailed study of the F-type detached eclipsing binary BK Peg, based on new photometric and spectroscopic observations. The two components, which have evolved to the upper half of the main-sequence band, are quite different with masses and radii of (1.414 +/- 0.007 Msun, 1.988 +/- 0.008 Rsun) and (1.257 +/- 0.005 Msun, 1.474 +/- 0.017 Rsun), respectively. The 5.49 day period orbit of BK Peg is slightly eccentric (e = 0.053). The measured rotational velocities are 16.6 +/- 0.2 (primary) and 13.4 +/- 0.2 (secondary) km/s. For the secondary component this corresponds to (pseudo)synchronous rotation, whereas the primary component seems to rotate at a slightly lower rate. We derive an iron abundance of [Fe/H] =-0.12 +/- 0.07 and similar abundances for Si, Ca, Sc, Ti, Cr and Ni. Yonsei-Yale and Victoria-Regina evolutionary models for the observed metal abundance reproduce BK Peg at ages of 2.75 and 2.50 Gyr, respectively, but tend to predict a lower age for the more massive primary component than for the secondary. We find the same age trend for three other upper main-sequence systems in a sample of well studied eclipsing binaries with components in the 1.15-1.70 Msun range, where convective core overshoot is gradually ramped up in the models. We also find that the Yonsei-Yale models systematically predict higher ages than the Victoria-Regina models. The sample includes BW Aqr, and as a supplement we have determined a [Fe/H] abundance of -0.07 +/- 0.11 for this late F-type binary. We propose to use BK Peg, BW Aqr, and other well-studied 1.15-1.70 Msun eclipsing binaries to fine-tune convective core overshoot, diffusion, and possibly other ingredients of modern theoretical evolutionary models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا