No Arabic abstract
We report spectroscopic observations of the 2.63 day, detached, F-type main-sequence eclipsing binary V2154 Cyg. We use our observations together with existing $uvby$ photometric measurements to derive accurate absolute masses and radii for the stars good to better than 1.5%. We obtain masses of M1 = 1.269 +/- 0.017 M(Sun) and M2 = 0.7542 +/- 0.0059 M(Sun), radii of R1 = 1.477 +/- 0.012 R(Sun) and R2 = 0.7232 +/- 0.0091 R(Sun), and effective temperatures of 6770 +/- 150 K and 5020 +/- 150 K for the primary and secondary stars, respectively. Both components appear to have their rotations synchronized with the motion in the circular orbit. A comparison of the properties of the primary with current stellar evolution models gives good agreement for a metallicity of [Fe/H] = -0.17, which is consistent with photometric estimates, and an age of about 2.2 Gyr. On the other hand, the K2 secondary is larger than predicted for its mass by about 4%. Similar discrepancies are known to exist for other cool stars, and are generally ascribed to stellar activity. The system is in fact an X-ray source, and we argue that the main site of the activity is the secondary star. Indirect estimates give a strength of about 1 kG for the surface magnetic field on that star. A previously known close visual companion to V2154 Cyg is shown to be physically bound, making the system a hierarchical triple.
We report new spectroscopic and photometric observations of the main-sequence, detached, eccentric, double-lined eclipsing binary V541 Cyg (P = 15.34 days, e = 0.468). Using these observations together with existing measurements we determine the component masses and radii to better than 1% precision: M1 = 2.335 +0.017/-0.013 MSun, M2 = 2.260 +0.016/-0.013 MSun, R1 = 1.859 +0.012/-0.009 RSun, and R2 = 1.808 +0.015/-0.013 RSun. The nearly identical B9.5 stars have estimated temperatures of 10650 +/- 200 K and 10350 +/- 200 K. A comparison of these properties with current stellar evolution models shows excellent agreement at an age of about 190 Myr and [Fe/H] approximately -0.18. Both components are found to be rotating at the pseudo-synchronous rate. The system displays a slow periastron advance that is dominated by General Relativity (GR), and has previously been claimed to be slower than predicted by theory. Our new measurement, dw/dt = 0.859 +0.042/-0.017 deg/century, has an 88% contribution from GR and agrees with the expected rate within the uncertainties. We also clarify the use of the gravity darkening coefficients in the light-curve fitting program EBOP, a version of which we use here.
We report extensive differential V-band photometry and high-resolution spectroscopic observations of the early F-type, 1.06-day detached eclipsing binary V506 Oph. The observations along with times of minimum light from the literature are used to derive a very precise ephemeris and the physical properties for the components, with the absolute masses and radii being determined to 0.7% or better. The masses are 1.4153 +/- 0.0100 M(Sun) and 1.4023 +/- 0.0094 M(sun) for the primary and secondary, the radii are 1.725 +/- 0.010 R(Sun) and 1.692 +/- 0.012 R(Sun), and the effective temperatures 6840 +/- 150 K and 6780 +/- 110 K, respectively. The orbit is circular and the stars are rotating synchronously. The accuracy of the radii and temperatures is supported by the resulting distance estimate of 564 +/- 30 pc, in excellent agreement with the value implied by the trigonometric parallax listed in the Gaia/DR2 catalog. Current stellar evolution models from the MIST series for a composition of [Fe/H] = -0.04 match the properties of both stars in V506 Oph very well at an age of 1.83 Gyr, and indicate they are halfway through their core hydrogen-burning phase.
We report extensive differential V-band photometry and high-resolution spectroscopy for the 1.14 day, detached, double-lined eclipsing binary BT Vul (F0+F7). Our radial-velocity monitoring and light curve analysis lead to absolute masses and radii of M1 = 1.5439 +/- 0.0098 MSun and R1 = 1.536 +/- 0.018 RSun for the primary, and M2 = 1.2196 +/- 0.0080 MSun and R2 = 1.151 +/- 0.029 RSun for the secondary. The effective temperatures are 7270 +/- 150 K and 6260 +/- 180 K, respectively. Both stars are rapid rotators, and the orbit is circular. A comparison with stellar evolution models from the MIST series shows excellent agreement with these determinations, for a composition of [Fe/H] = +0.08 and an age of 350 Myr. The two components of BT Vul are very near the zero-age main sequence.
We report extensive high-resolution spectroscopic observations and V-band differential photometry of the slightly eccentric 7.02-day detached eclipsing binary V501 Mon (A6m+F0), which we use to determine its absolute dimensions to high precision (0.3% for the masses and 1.8% for the radii, or better). The absolute masses, radii, and temperatures are M(A) = 1.6455 +/- 0.0043 M(Sun), R(A) = 1.888 +/- 0.029 R(Sun), and T(A) = 7510 +/- 100 K for the primary, and M(B) = 1.4588 +/- 0.0025 M(Sun), R(B) = 1.592 +/- 0.028 R(Sun), and T(B) = 7000 +/- 90 K for the secondary. Apsidal motion has been detected, to which General Relativity contributes approximately 70%. The primary star is found to be a metallic-line A star. A detailed chemical analysis of the disentangled spectra yields abundances for more than a dozen elements in each star. Based on the secondary, the system metallicity is near solar: [Fe/H] = +0.01 +/- 0.06. Lithium is detected in the secondary but not in the primary. A comparison with current stellar evolution models shows a good match to the measured properties at an age of about 1.1 Gyr.
Low-mass stars in eclipsing binary systems show radii larger and effective temperatures lower than theoretical stellar models predict for isolated stars with the same masses. Eclipsing binaries with low-mass components are hard to find due to their low luminosity. As a consequence, the analysis of the known low-mass eclipsing systems is key to understand this behavior. We developed a physical model of the LMDEB system NSVS 10653195 to accurately measure the masses and radii of the components. We obtained several high-resolution spectra in order to fit a spectroscopic orbit. Standardized absolute photometry was obtained to measure reliable color indices and to measure the mean Teff of the system in out-of-eclipse phases. We observed and analyzed optical VRI and infrared JK band differential light-curves which were fitted using PHOEBE. A Markov-Chain Monte Carlo (MCMC) simulation near the solution found provides robust uncertainties for the fitted parameters. NSVS 10653195 is a detached eclipsing binary composed of two similar stars with masses of M1=0.6402+/-0.0052 Msun and M2=0.6511+/-0.0052 Msun and radii of R1=0.687^{+0.017}_{-0.024} Rsun and R2=0.672^{+0.018}_{-0.022} Rsun. Spectral types were estimated to be K6V and K7V. These stars rotate in a circular orbit with an orbital inclination of i=86.22+/-0.61 degrees and a period of P=0.5607222(2) d. The distance to the system is estimated to be d=135.2^{+7.6}_{-7.9} pc, in excellent agreement with the value from Gaia. If solar metallicity were assumed, the age of the system would be older than log(age)~8 based on the Mbol-log Teff diagram. NSVS 10653195 is composed of two oversized and active K stars. While their radii is above model predictions their Teff are in better agreement with models.