Do you want to publish a course? Click here

Manipulation of Vortices by Localized Impurities in Bose-Einstein Condensates

140   0   0.0 ( 0 )
 Added by Kody Law
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the manipulation of Bose-Einstein condensate vortices by optical potentials generated by focused laser beams. It is shown that for appropriate choices of the laser strength and width it is possible to successfully transport vortices to various positions inside the trap confining the condensate atoms. Furthermore, the full bifurcation structure of possible stationary single-charge vortex solutions in a harmonic potential with this type of impurity is elucidated. The case when a moving vortex is captured by a stationary laser beam is also studied, as well as the possibility of dragging the vortex by means of periodic optical lattices.



rate research

Read More

We analyze vector localized solutions of two-component Bose-Einstein condensates (BECs) with variable nonlinearity parameter and external trap potential through similarity transformation technique which transforms the two coupled Gross-Pitaevskii equations into a pair of coupled nonlinear Schr{o}dinger equations with constant coefficients under a specific integrability condition. In this analysis we consider three different types of external trap potentials: a time-independent trap, a time-dependent monotonic trap, and a time-dependent periodic trap. We point out the existence of different interesting localized structures, namely rogue waves, dark-and bright soliton-rogue wave, and rogue wave-breather-like wave for the above three cases of trap potentials. We show how the vector localized density profiles in a constant background get deformed when we tune the strength of the trap parameter. Further we investigate the nature of the trajectories of the nonautonomous rogue waves. We also construct the dark-dark rogue wave solution for repulsive-repulsive interaction of two-component BECs and analyze the associated characteristics for the three different kinds of traps. We then deduce single, two and three composite rogue waves for three component BECs and discuss the correlated characteristics when we tune the strength of the trap parameter for different trap potentials.
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongate quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.
We numerically study the breathing dynamics induced by collision between bright solitons in the one-dimensional Bose-Einstein condensates with strong dipole-dipole interaction. This breathing phenomenon is closely related to the after-collision short-lived attraction of solitons induced by the dipolar effect. The initial phase difference of solitons leads to the asymmetric dynamics after collision, which is manifested on their different breathing amplitude, breathing frequency, and atom number. We clarify that the asymmetry of breathing frequency is directly induced by the asymmetric atom number, rather than initial phase difference. Moreover, the collision between breathing solitons can produce new after-two-collision breathing solitons, whose breathing amplitude can be adjusted and reach the maximum (or minimum) when the peak-peak (or dip-dip) collision happens.
The structure and stability of vortices in hybrid atomic-molecular Bose-Einstein condensates is analyzed in the framework of a two-component Gross-Pitaevskii-type model that describes the stimulated Raman-induced photoassociation process. New types of topological vortex states are predicted to exist in the coherently coupled two-component condensates even without a trap, and their nontrivial dynamics in the presence of losses is demonstrated.
113 - Yu-Qin Yao , Ji Li , Wei Han 2016
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number $n$, and the numbers of the density packets for each quantum state depend on both the principal quantum number $n$ and the secondary quantum number $l$. When the coupling is not zero,the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number $n$, only depend on the secondary quantum number $l$. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number $n$, while the stability of the rational solutions depends on the chemical potential and Raman detuning.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا