Do you want to publish a course? Click here

Vortices in atomic-molecular Bose-Einstein condensates

83   0   0.0 ( 0 )
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The structure and stability of vortices in hybrid atomic-molecular Bose-Einstein condensates is analyzed in the framework of a two-component Gross-Pitaevskii-type model that describes the stimulated Raman-induced photoassociation process. New types of topological vortex states are predicted to exist in the coherently coupled two-component condensates even without a trap, and their nontrivial dynamics in the presence of losses is demonstrated.



rate research

Read More

Vortex is a topological defect with a quantized winding number of the phase in superfluids and superconductors. Here, we investigate the crystallized (triangular, square, honeycomb) and amorphous vortices in rotating atomic-molecular Bose-Einstein condensates (BECs) by using the damped projected Gross-Pitaevskii equation. The amorphous vortices are the result of the considerable deviation induced by the interaction of atomic-molecular vortices. By changing the atom-molecule interaction from attractive to repulsive, the configuration of vortices can change from an overlapped atomic-molecular vortices to carbon-dioxide-type ones, then to atomic vortices with interstitial molecular vortices, and finally into independent separated ones. The Raman detuning can tune the ratio of the atomic vortex to the molecular vortex. We provide a phase diagram of vortices in rotating atomic-molecular BECs as a function of Raman detuning and the strength of atom-molecule interaction.
We analyse, theoretically and experimentally, the nature of solitonic vortices (SV) in an elongated Bose-Einstein condensate. In the experiment, such defects are created via the Kibble-Zurek mechanism, when the temperature of a gas of sodium atoms is quenched across the BEC transition, and are imaged after a free expansion of the condensate. By using the Gross-Pitaevskii equation, we calculate the in-trap density and phase distributions characterizing a SV in the crossover from an elongate quasi-1D to a bulk 3D regime. The simulations show that the free expansion strongly amplifies the key features of a SV and produces a remarkable twist of the solitonic plane due to the quantized vorticity associated with the defect. Good agreement is found between simulations and experiments.
254 - J.K. Nilsen 2005
In this work we compare the results of the Gross-Pitaevskii and modified Gross-Pitaevskii equations with ab initio variational Monte Carlo calculations for Bose-Einstein condensates of atoms in axially symmetric traps. We examine both the ground state and excited states having a vortex line along the z-axis at high values of the gas parameter and demonstrate an excellent agreement between the modified Gross-Pitaevskii and ab initio Monte Carlo methods, both for the ground and vortex states.
We observe solitonic vortices in an atomic Bose-Einstein condensate after free expansion. Clear signatures of the nature of such defects are the twisted planar density depletion around the vortex line, observed in absorption images, and the double dislocation in the interference pattern obtained through homodyne techniques. Both methods allow us to determine the sign of the quantized circulation. Experimental observations agree with numerical simulations. These solitonic vortices are the decay product of phase defects of the BEC order parameter spontaneously created after a rapid quench across the BEC transition in a cigar-shaped harmonic trap and are shown to have a very long lifetime.
96 - J.R. Anglin 2001
The theory of vortex motion in a dilute superfluid of inhomogeneous density demands a boundary layer approach, in which different approximation schemes are employed close to and far from the vortex, and their results matched smoothly together. The most difficult part of this procedure is the hydrodynamic problem of the velocity field many healing lengths away from the vortex core. This paper derives and exploits an exact solution of this problem in the two-dimensional case of a linear trapping potential, which is an idealization of the surface region of a large condensate. It thereby shows that vortices in inhomogeneous clouds are effectively dressed by a non-trivial distortion of their flow fields; that image vortices are not relevant to Thomas-Fermi surfaces; and that for condensates large compared to their surface depths, the energetic barrier to vortex penetration disappears at the Landau critical velocity for surface modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا