Do you want to publish a course? Click here

Microscopic origin of magnetism and magnetic interactions in ferropnictides

96   0   0.0 ( 0 )
 Added by Michelle Johannes
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

One year after their initial discovery, two schools of thought have crystallized regarding the electronic structure and magnetic properties of ferropnictide systems. One postulates that these are itinerant weakly correlated metallic systems that become magnetic by virtue of spin-Peierls type transition due to near-nesting between the hole and the electron Fermi surface pockets. The other argues these materials are strongly or at least moderately correlated, the electrons are considerably localized and close to a Mott-Hubbard transition, with the local magnetic moments interacting via short-range superexchange. In this paper we argue that neither picture is fully correct. The systems are moderately correlated, but with correlations driven by Hunds rule coupling rather than by the on-site Hubbard repulsion. The iron moments are largely local, driven by Hunds intra-atomic exchange. Superexchange is not operative and the interactions between the Fe moments are considerably long-range and driven mostly by one-electron energies of all occupied states.



rate research

Read More

By means of first principles calculations we investigate the nature of exchange coupling in ferromagnetic bcc Fe on a microscopic level. Analyzing the basic electronic structure reveals a drastic difference between the $3d$ orbitals of $E_g$ and $T_{2g}$ symmetries. The latter ones define the shape of the Fermi surface, while the former ones form weakly-interacting impurity levels. We demonstrate that, as a result of this, in Fe the $T_{2g}$ orbitals participate in exchange interactions, which are only weakly dependent on the configuration of the spin moments and thus can be classified as Heisenberg-like. These couplings are shown to be driven by Fermi surface nesting. In contrast, for the $E_g$ states the Heisenberg picture breaks down, since the corresponding contribution to the exchange interactions is shown to strongly depend on the reference state they are extracted from. Our analysis of the nearest-neighbour coupling indicates that the interactions among $E_g$ states are mainly proportional to the corresponding hopping integral and thus can be attributed to be of double-exchange origin.
Iron telluride (FeTe), a relative of the iron based high temperature superconductors, displays unusual magnetic order and structural transitions. Here we explore the idea that strong correlations may play an important role in these materials. We argue that the unusual orders observed in FeTe can be understood from a picture of correlated local moments with orbital degeneracy, coupled to a small density of itinerant electrons. A component of the structural transition is attributed to orbital, rather than magnetic ordering, introducing a strongly anisotropic character to the system along the diagonal directions of the iron lattice. Double exchange interactions couple the diagonal chains leading to the observed ordering wavevector. The incommensurate order in samples with excess iron arises from electron doping in this scenario. The strong anisotropy of physical properties in the ordered phase should be detectable by transport in single domains. Predictions for ARPES, inelastic neutron scattering and hole/electron doping studies are also made.
Recent discovery of oxypnictide superconductor LaFeAs(O,F) (LFAO-F) with the critical temperature (Tc) of 26 K and succeeding revelation of much increased Tc upon substitution of La for other rare earth elements (such as Sm, leading to ~43 K) and application of pressure for LFAO-F (~ 43 K) has triggered broad interest in the mechanism yielding relatively high Tc in this new class of compounds. While they share a feature with high-Tc cuprates that superconductivity occurs upon carrier doping to pristine compound which exhibits magnetism, they also resemble the heavy-fermion compounds in the sense that superconductivity appears in the vicinity of magnetic phase. Investigation of electronic states near the boundary between these two phases might provide some useful information on the mechanism of superconductivity, as it has been proved to be the case in many exotic superconductors. Here we show by muon experiment in the LFAO-F compound that a macroscopic phase separation into superconducting and spin glass-like magnetic phases occurs at x=0.06 that is near the phase boundary, where both the magnetism and superconductivity develop simultaneously below a common Tc ~ 18 K. This accordance strongly suggests intimate relationship between magnetism and superconductivity typically found in heavy-fermion systems near the quantum critical point.
Microscopic origin of the ferromagnetic (FM) exchange coupling in CrCl$_3$ and CrI$_3$, their common aspects and differences, are investigated on the basis of density functional theory combined with realistic modeling approach for the analysis of interatomic exchange interactions. We perform a comparative study based on the pseudopotential and linear muffin-tin orbital methods by treating the effects of electron exchange and correlation in GGA and LSDA, respectively. The results of ordinary band structure calculations are used in order to construct the minimal tight-binding type models describing the behavior of the magnetic Cr $3d$ and ligand $p$ bands in the basis of localized Wannier functions, and evaluate the effective exchange coupling ($J_{rm eff}$) between two Cr sublattices employing four different technique: (i) Second-order Greens function perturbation theory for infinitesimal spin rotations of the LSDA (GGA) potential at the Cr sites; (ii) Enforcement of the magnetic force theorem in order to treat both Cr and ligand spins on a localized footing; (iii) Constrained total-energy calculations with an external field, treated in the framework of self-consistent linear response theory. We argue that the ligand states play crucial role in the ferromagnetism of Cr trihalides, though their contribution to $J_{rm eff}$ strongly depends on additional assumptions, which are traced back to fundamentals of adiabatic spin dynamics. Particularly, by neglecting ligand spins in the Greens function method, $J_{rm eff}$ can easily become antiferromagnetic, while by treating them as localized, one can severely overestimate the FM coupling. The best considered approach is based on the constraint method, where the ligand states are allowed to relax in response to each instantaneous reorientation of the Cr spins, controlled by the external field.
Chiral spin textures at the interface between ferromagnetic and heavy nonmagnetic metals, such as Neel-type domain walls and skyrmions, have been studied intensively because of their great potential for future nanomagnetic devices. The Dyzaloshinskii-Moriya interaction (DMI) is an essential phenomenon for the formation of such chiral spin textures. In spite of recent theoretical progress aiming at understanding the microscopic origin of the DMI, an experimental investigation unravelling the physics at stake is still required. Here, we experimentally demonstrate the close correlation of the DMI with the anisotropy of the orbital magnetic moment and with the magnetic dipole moment of the ferromagnetic metal. The density functional theory and the tight-binding model calculations reveal that asymmetric electron occupation in orbitals gives rise to this correlation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا