Do you want to publish a course? Click here

Dispersal of protoplanetary disks by central wind stripping

596   0   0.0 ( 0 )
 Added by Isamu Matsuyama
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a model for the dispersal of protoplanetary disks by winds from either the central star or the inner disk. These winds obliquely strike the flaring disk surface and strip away disk material by entraining it in an outward radial-moving flow at the wind-disk interface which lies several disk scale heights above the mid-plane. The disk dispersal time depends on the entrainment velocity at which disk material flows into this turbulent shear layer interface. If the entrainment efficiency is ~10% of the local sound speed, a likely upper limit, the dispersal time at 1 AU is ~6 Myr for a disk with a surface density of 10^3 g cm^{-2}, a solar mass central star, and a wind with an outflow rate 10^{-8} Msun/yr and terminal velocity 200 km/s. When compared to photoevaporation and viscous evolution, wind stripping can be a dominant mechanism only for the combination of low accretion rates (< 10^{-8} Msun/yr) and wind outflow rates approaching these accretion rates. This case is unusual since generally outflow rates are < 0.1 of of accretion rates.



rate research

Read More

Protoplanetary disks are likely to be threaded by a weak net flux of vertical magnetic field that is a remnant of the much larger fluxes present in molecular cloud cores. If this flux is approximately conserved its dynamical importance will increase as mass is accreted, initially by stimulating magnetorotational disk turbulence and subsequently by enabling wind angular momentum loss. We use fits to numerical simulations of ambipolar dominated disk turbulence to construct simplified one dimensional evolution models for weakly magnetized protoplanetary disks. We show that the late onset of significant angular momentum loss in a wind can give rise to two timescale disk evolution in which a long phase of viscous evolution precedes rapid dispersal as the wind becomes dominant. The wide dispersion in disk lifetimes could therefore be due to varying initial levels of net flux. Magnetohydrodynamic (MHD) wind triggered dispersal differs from photoevaporative dispersal in predicting mass loss from small (less that 1 AU) scales, where thermal winds are suppressed. Our specific models are based on a limited set of simulations that remain uncertain, but qualitatively similar evolution appears likely if mass is lost from disks more quickly than flux, and if MHD winds become important as the plasma beta decreases.
We investigate the roles of magnetically driven disk wind (MDW) and thermally driven photoevaporative wind (PEW) in the long-time evolution of protoplanetary disks. We start simulations from the early phase in which the disk mass is $0.118,{mathrm{M}_{odot}}$ around a $1,{mathrm{M}_{odot}}$ star and track the evolution until the disk is completely dispersed. We incorporate the mass loss by PEW and the mass loss and magnetic braking (wind torque) by MDW, in addition to the viscous accretion, viscous heating, and stellar irradiation. We find that MDW and PEW respectively have different roles: magnetically driven wind ejects materials from an inner disk in the early phase, whereas photoevaporation has a dominant role in the late phase in the outer ($gtrsim1,$au) disk. The disk lifetime, which depends on the combination of MDW, PEW, and viscous accretion, shows a large variation of $sim1$-$20,$Myr; the gas is dispersed mainly by the MDW and the PEW in the cases with a low viscosity and the lifetime is sensitive to the mass-loss rate and torque of the MDW, whereas the lifetime is insensitive to these parameters when the viscosity is high. Even in disks with very weak turbulence, the cooperation of MDW and PEW enables the disk dispersal within a few Myr.
We aim to understand the effect of stellar evolution on the evolution of protoplanetary disks. We focus in particular on the disk evolution around intermediate-mass (IM) stars, which evolve more rapidly than low-mass ones. We numerically solve the long-term evolution of disks around 0.5-5 solar-mass stars considering viscous accretion and photoevaporation (PE) driven by stellar far-ultraviolet (FUV), extreme-ultraviolet (EUV), and X-ray emission. We also take stellar evolution into account and consider the time evolution of the PE rate. We find that the FUV, EUV, and X-ray luminosities of IM stars evolve by orders of magnitude within a few Myr along with the time evolution of stellar structure, stellar effective temperature, or accretion rate. Therefore, the PE rate also evolves with time by orders of magnitude, and we conclude that stellar evolution is crucial for the disk evolution around IM stars.
104 - Zitao Hu , Xue-Ning Bai 2021
It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hall effect, especially when the background magnetic field is aligned with disk rotation. We investigate how such flow structures impact global dust transport via Monte-Carlo simulations, focusing on two scenarios. In the first scenario, the toroidal magnetic field is maximized in the miplane, leading to accretion and decretion flows above and below. In the second scenario, the toroidal field changes sign across the midplane, leading to an accretion flow at the disk midplane, with decretion flows above and below. We find that in both cases, the contribution from additional gas flows can still be accurately incorporated into the advection-diffusion framework for vertically-integrated dust transport, with enhanced dust radial diffusion up to an effective $alpha^{rm eff}sim10^{-2}$ for strongly coupled dust, even when background turbulence is weak $alpha<10^{-4}$. Dust radial drift is also modestly enhanced in the second scenario. We provide a general analytical theory that accurately reproduces our simulation results, thus establishing a framework to model global dust transport that realistically incorporates vertical gas flow structures. We also note that the theory is equally applicable to the transport of chemical species.
Global evolution and dispersal of protoplanetary disks (PPDs) is governed by disk angular momentum transport and mass-loss processes. Recent numerical studies suggest that angular momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a 1D model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on 1) the magnetic field strength at the wind base, characterized by the poloidal Alfven speed $v_{Ap}$, 2) the sound speed $c_s$ near the wind base, and 3) how rapidly poloidal field lines diverge (achieve $R^{-2}$ scaling). When $v_{Ap}gg c_s$, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that well exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect $v_{Ap}$ to be comparable to $c_s$ at the wind base. The resulting wind is heavily loaded, with total wind mass loss rate likely reaching a considerable fraction of wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا