Do you want to publish a course? Click here

Regularization and minimization of Haefliger structures of codimension one

138   0   0.0 ( 0 )
 Added by Gael Meigniez
 Publication date 2009
  fields
and research's language is English
 Authors Gael Meigniez




Ask ChatGPT about the research

We prove the existence of a minimal (all leaves dense) foliation of codimension one, on every closed manifold of dimension at least 4 whose Euler characteristic is null, in every homotopy class of hyperplanes distributions, in every homotopy class of Haefliger structures, in every differentiability class, under the obvious embedding assumption. The proof uses only elementary means, and reproves Thurstons existence theorem in all dimensions. A parametric version is also established.



rate research

Read More

For some geometries including symplectic and contact structures on an n-dimensional manifold, we introduce a two-step approach to Gromovs h-principle. From formal geometric data, the first step builds a transversely geometric Haefliger structure of codimension n. This step works on all manifolds, even closed. The second step, which works only on open manifolds and for all geometries, regularizes the intermediate Haefliger structure and produces a genuine geometric structure. Both steps admit relative parametri
202 - Fabio S. Souza 2011
We present new open manifolds that are not homeomorphic to leaves of any C^0 codimension one foliation of a compact manifold. Among them are simply connected manifolds of dimension 5 or greater that are non-periodic in homotopy or homology, namely in their 2-dimensional homotopy or homology groups.
For $Gamma_1$-structures on 3-manifolds, we give a very simple proof of Thurstons regularization theorem, first proved in cite{thurston}, without using Mathers homology equivalence. Moreover, in the co-orientable case, the resulting foliation can be chosen of a precise kind, namely an open book foliation modified by suspension. There is also a model in the non co-orientable case.
113 - Gael Meigniez 2021
The classifying space for the framed Haefliger structures of codimension $q$ and class $C^r$ is $(2q-1)$-connected, for $1le rleinfty$. The corollaries deal with the existence of foliations, with the homology and the perfectness of the diffeomorphism groups, with the existence of foliated products, and of foliated bundles.
233 - Paul A. Schweitzer 2009
Every open manifold L of dimension greater than one has complete Riemannian metrics g with bounded geometry such that (L,g) is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of (L,g) suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the `bounded homology property, a semi-local property of (L,g) that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا