Do you want to publish a course? Click here

Molecular Ensemble Based Remote Quantum Storage for Charge Qubit via Quasi-Dark State

101   0   0.0 ( 0 )
 Added by HuiRong Zhang
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose a quantum storage scheme independent of the current time-control schemes, and study a quantum data bus (transmission line resonator) in a hybrid system consisting of a circuit QED system integrated with a cold molecular ensemble. Here, an effective interaction between charge qubit and molecule is mediated by the off-resonate field in the data bus. Correspondingly, the charge state can be mapped into the collective quasi-spin state of the molecular ensemble via the standard dark state based adiabatic manipulation.



rate research

Read More

Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Recent experiments have shown that superconducting qubits can control and detect individual phonons in a resonant structure, enabling the coherent generation and measurement of complex stationary phonon states. Here, we report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2 mm-long acoustic quantum communication channel, equivalent to a 500 ns delay line, we demonstrate the emission and re-capture of a phonon by one qubit; quantum state transfer between two qubits with a 67% efficiency; and, by partial transfer of a phonon between two qubits, generation of an entangled Bell pair with a fidelity of $mathcal{F}_B = 84 pm 1$ %
We demonstrate an experimental realization of remote state preparation via the quantum teleportation algorithm, using an entangled photon pair in the polarization degree of freedom as the quantum resource. The input state is encoded on the path of one of the photons from the pair. The improved experimental scheme allows us to control the preparation and teleportation of a state over the entire Bloch sphere with a resolution of the degree of mixture given by the coherence length of the photon pair. Both the preparation of the input state and the implementation of the quantum gates are performed in a pair of chained displaced Sagnac interferometers, which contribute to the overall robustness of the setup. An average fidelity above 0.9 is obtained for the remote state preparation process. This scheme allows for a prepared state to be transmitted on every repetition of the experiment, thus giving an intrinsic success probability of 1.
Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a quantum channel, quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of 100 million rubidium atoms and connected by a 150-meter optical fiber. The spinwave state of one atomic ensemble is mapped to a propagating photon, and subjected to Bell-state measurements with another single photon that is entangled with the spinwave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as the first teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.
A qubit chosen from equatorial or polar great circles on a Bloch sphere can be remotely prepared with an Einstain-Podolsky-Rosen (EPR) state shared and a cbit communication. We generalize this protocal into an arbitrary longitudinal qubit on the Bloch sphere in which the azimuthal angle phi can be an arbitrary value instead of only being zero. The generalized scheme was experimentally realized using liquid-state nuclear magnetic resonance (NMR) techniques. Also, we have experimentally demonstrated remote state measurement (RSM) on an arbitary qubit proposed by Pati.
The transfer of an unknown quantum state, from a sender to a receiver, is one of the main requirements to perform quantum information processing tasks. In this respect, the state transfer of a single qubit by means of spin chains has been widely discussed, and many protocols aiming at performing this task have been proposed. Nevertheless, the state transfer of more than one qubit has not been properly addressed so far. In this paper, we present a modified version of a recently proposed quantum state transfer protocol [Phys. Rev. A 87, 062309 (2013)] to obtain a quantum channel for the transfer of two qubits. This goal is achieved by exploiting Rabi-like oscillations due to excitations induced by means of strong and localized magnetic fields. We derive exact analytical formulae for the fidelity of the quantum state transfer, and obtain a high-quality transfer for general quantum states as well as for specific classes of states relevant for quantum information processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا