Do you want to publish a course? Click here

Phase ordering and universality for continuous symmetry models on graphs

278   0   0.0 ( 0 )
 Added by Alessandro Vezzani
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the phase-ordering kinetics following a temperature quench of O(N) continuous symmetry models with and 4 on graphs. By means of extensive simulations, we show that the global pattern of scaling behaviours is analogous to the one found on usual lattices. The exponent a for the integrated response function and the exponent z, describing the growing length, are related to the large scale topology of the networks through the spectral dimension and the fractal dimension alone, by means of the same expressions as are provided by the analytic solution of the inifnite N limit. This suggests that the large N value of these exponents could be exact for every N.



rate research

Read More

We study numerically the phase-ordering kinetics following a temperature quench of the Ising model with single spin flip dynamics on a class of graphs, including geometrical fractals and random fractals, such as the percolation cluster. For each structure we discuss the scaling properties and compute the dynamical exponents. We show that the exponent $a_chi$ for the integrated response function, at variance with all the other exponents, is independent on temperature and on the presence of pinning. This universal character suggests a strict relation between $a_chi$ and the topological properties of the networks, in analogy to what observed on regular lattices.
We study the time-averaged flow in a model of particles that randomly hop on a finite directed graph. In the limit as the number of particles and the time window go to infinity but the graph remains finite, the large-deviation rate functional of the average flow is given by a variational formulation involving paths of the density and flow. We give sufficient conditions under which the large deviations of a given time averaged flow is determined by paths that are constant in time. We then consider a class of models on a discrete ring for which it is possible to show that a better strategy is obtained producing a time-dependent path. This phenomenon, called a dynamical phase transition, is known to occur for some particle systems in the hydrodynamic scaling limit, which is thus extended to the setting of a finite graph.
The $s=1$ spinor Bose condensate at zero temperature supports ferromagnetic and polar phases that combine magnetic and superfluid ordering. We investigate the formation of magnetic domains at finite temperature and magnetic field in two dimensions in an optical trap. We study the general ground state phase diagram of a spin-1 system and focus on a phase that has a magnetic Ising order parameter and numerically determine the nature of the finite temperature superfluid and magnetic phase transitions. We then study three different dynamical models: model A, which has no conserved quantities, model F, which has a conserved second sound mode and the Gross-Pitaevskii (GP) equation which has a conserved density and magnetization. We find the dynamic critical exponent to be the same for models A and F ($z=2$) but different for GP ($z approx 3$). Externally imposed magnetization conservation in models A and F yields the value $z approx 3$, which demonstrates that the only conserved density relevant to domain formation is the magnetization density.
A new classification of sandpile models into universality classes is presented. On the basis of extensive numerical simulations, in which we measure an extended set of exponents, the Manna two state model [S. S. Manna, J. Phys. A 24, L363 (1991)] is found to belong to a universality class of random neighbor models which is distinct from the universality class of the original model of Bak, Tang and Wiesenfeld [P. Bak, C. Tang and K. Wiensenfeld, Phys. Rev. Lett. 59, 381 (1987)]. Directed models are found to belong to a universality class which includes the directed model introduced and solved by Dhar
We study the stochastic dynamics of infinitely many globally interacting $q$-state units on a ring that is externally driven. While repulsive interactions always lead to uniform occupations, attractive interactions give rise to much richer phenomena: We analytically characterize a Hopf bifurcation which separates a high-temperature regime of uniform occupations from a low-temperature one where all units coalesce into a single state. For odd $q$ below the critical temperature starts a synchronization regime which ends via a second phase transition at lower temperatures, while for even $q$ this intermediate phase disappears. We find that interactions have no effects except below critical temperature for attractive interactions. A thermodynamic analysis reveals that the dissipated work is reduced in this regime, whose temperature range is shown to decrease as $q$ increases. The $q$-dependence of the power-efficiency trade-off is also analyzed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا