No Arabic abstract
The finite temperature phase diagram of two-dimensional dipolar bosons versus dipolar interaction strength is discussed. We identify the stable phases as dipolar superfluid (DSF), dipolar Wigner crystal (DWC), dipolar hexatic fluid (DHF), and dipolar normal fluid (DNF). We also show that other interesting phases like dipolar supersolid (DSS) and dipolar hexatic superfluid (DHSF) are at least metastable, and can potentially be reached by thermal quenching. In particular, for large densities or strong dipolar interactions, we find that the DWC exists at low temperatures, but melts into a DHF at higher temperatures, where translational crystaline order is destroyed but orientational order is preserved. Upon further increase in temperature the DHF phase melts into the DNF, where both orientational and translational lattice order are absent. Lastly, we discuss the static structure factor for some of the stable phases and show that they can be identified via optical Bragg scattering measurements.
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-Hubbard model including correlated hopping due to the dipolar interactions, the coefficients are found from the second quantized Hamiltonian using the Wannier expansion with realistic parameters. We determine the phase diagram using the Gutzwiller ansatz in the regime where the coefficients of the correlated hopping terms are negative and can interfere with the tunneling due to single-particle effects. We show that this interference gives rise to staggered superfluid and supersolid phases at vanishing kinetic energy, while we identify parameter regions at finite kinetic energy where the phases are incompressible. We compare the results with the phase diagram obtained with the cluster Gutzwiller approach and with the results found in one dimension using DMRG.
The recent advances in creating nearly degenerate quantum dipolar gases in optical lattices are opening the doors for the exploration of equilibrium physics of quantum systems with anisotropic and long-range dipolar interactions. In this paper we study the zero- and finite-temperature phase diagrams of a system of hard-core dipolar bosons at half-filling, trapped in a two-dimensional optical lattice. The dipoles are aligned parallel to one another and tilted out of the optical lattice plane by means of an external electric field. At zero-temperature, the system is a superfluid at all tilt angles $theta$ provided that the strength of dipolar interaction is below a critical value $V_c(theta)$. Upon increasing the interaction strength while keeping $theta$ fixed, the superfluid phase is destabilized in favor of a checkerboard or a stripe solid depending on the tilt angle. We explore the nature of the phase transition between the two solid phases and find evidence of a micro-emulsion phase, following the Spivak-Kivelson scenario, separating these two solid phases. Additionally, we study the stability of these quantum phases against thermal fluctuations and find that the stripe solid is the most robust, making it the best candidate for experimental observation.
We study the emergence of several magnetic phases in dipolar bosonic gases subject to three-body loss mechanism employing numerical simulations based on the density matrix renormalization group(DMRG) algorithm. After mapping the original Hamiltonian in spin language, we find a strong parallelism between the bosonic theory and the spin-1 Heisenberg model with single ion anisotropy and long-range interactions. A rich phase diagram, including ferromagnetic, antiferromagnetic and non-local ordered phases, emerges in the half-filled one-dimensional case, and is preserved even in presence of a trapping potential.
It is generally believed that a Wigner Crystal in single layer graphene can not form because the magnitudes of the Coulomb interaction and the kinetic energy scale similarly with decreasing electron density. However, this scaling argument does not hold for the low energy states in bilayer graphene. We consider the formation of a Wigner Crystal in weakly doped bilayer graphene with an energy gap opened by a perpendicular electric field. We argue that in this system the formation of the Wigner Crystal is not only possible, but different phases of the crystal with very peculiar properties may exist here depending on the system parameters.
We determine the quantum ground state of dipolar bosons in a quasi-one-dimensional optical lattice and interacting via $s$-wave scattering. The Hamiltonian is an extended Bose-Hubbard model which includes hopping terms due to the interactions. We identify the parameter regime for which the coefficients of the interaction-induced hopping terms become negative. For these parameters we numerically determine the phase diagram for a canonical ensemble and by means of density matrix renormalization group. We show that at sufficiently large values of the dipolar strength there is a quantum interference between the tunneling due to single-particle effects and the one due to the interactions. Because of this phenomenon, incompressible phases appear at relatively large values of the single-particle tunneling rates. This quantum interference cuts the phase diagram into two different, disconnected superfluid phases. In particular, at vanishing kinetic energy, the phase is always superfluid with a staggered superfluid order parameter. These dynamics emerge from quantum interference phenomena between quantum fluctuations and interactions and shed light into their role in determining the thermodynamic properties of quantum matter.