No Arabic abstract
The manipulation of geometrically constrained magnetic domain walls (DWs) in nanoscale magnetic strips has attracted much interest recently, with proposals for prospective memory and logic devices. Here we propose to use the high controllability of the motion of geometrically constrained DWs for the manipulation of individual nanoparticles on a chip with an active control of position at the nanometer scale. The proposed method exploits the fact that magnetic nanoparticles in solution can be captured by a DW, whose position can be manipulated with nanometric accuracy in a specifically designed magnetic nanowire structure. We show that the high control over DW nucleation, displacement, and annihilation processes in such structures can be used to capture, transport and release magnetic nanoparticles. As magnetic particles with functionalized surfaces are commonly used as molecule carriers or labels, the accurate control over the handling of the single magnetic nanoparticle is crucial for several applications including single molecule manipulation, separation, cells manipulation and biomagnetic sensing.
The manipulation of geometrically constrained magnetic domain walls (DWs) in nanoscale magnetic strips has attracted much interest recently, with proposals for prospective memory and logic devices. Here we propose to use the high controllability of the motion of geometrically constrained DWs for the manipulation of individual nanoparticles on a chip with an active control of position at the nanometer scale. The proposed method exploits the fact that magnetic nanoparticles in solution can be captured by a DW, whose position can be manipulated with nanometric accuracy in a specifically designed magnetic nanowire structure. We show that the high control over DW nucleation, displacement, and annihilation processes in such structures can be used to capture, transport and release magnetic nanoparticles. As magnetic particles with functionalized surfaces are commonly used as molecule labels in several applications - including single molecule manipulation, separation, cells manipulation and biomagnetic sensing, the accurate control over the handling of the single magnetic nanoparticles becomes crucial as it may reflect the handling of the single molecules. The approach described here opens the path to the implementation and design of nano-transport lines, with application to single molecule study and lab-on-chip devices. In perspective, the easy integration on chip with sensors of domain walls and particles will allow for the realization of programmable circuits for molecular manipulation with continuous control of the desired process.
The time it takes to accelerate an object from zero to a given velocity depends on the applied force and the environment. If the force ceases, it takes exactly the same time to completely decelerate. A magnetic domain wall (DW) is a topological object that has been observed to follow this behavior. Here we show that acceleration and deceleration times of chiral Neel walls driven by current are different in a system with low damping and moderate Dzyaloshinskii-Moriya (DM) exchange constant. The time needed to accelerate a DW with current via the spin Hall torque is much faster than the time it needs to decelerate once the current is turned off. The deceleration time is defined by the DM exchange constant whereas the acceleration time depends on the spin Hall torque, enabling tunable inertia of chiral DWs. Such unique feature of chiral DWs can be utilized to move and position DWs with lower current, key to the development of storage class memory devices.
We present a theoretical investigation of electron states hosted by magnetic domain walls on the 3D topological insulator surface. The consideration includes the domain walls with distinct vectorial and spatial textures. The study is carried out on the basis of the Hamiltonian for quasi-relativistic fermions by using a continual approach and tight-binding calculations. We derive the spectral characteristics and spatial localization of the the one-dimensional low-energy states appearing at the domain walls. The antiphase domain walls are shown to generate the topologically protected chiral states with linear dispersion, the group velocity and spin-polarization direction of which depend on an easy axis orientation. In the case of an easy plane anisotropy, we predict a realization of a dispersionless state, flat band in the energy spectrum, that is spin-polarized along the surface normal. Modification of the surface states in the multi-domain case, which is approximated by a periodic set of domain walls, is described as well. We find that the magnetic domain walls with complex internal texture, such as Neel-like or Bloch-like walls, also host the topological states, although their spectrum and spin structure can be changed compared with the sharp wall case.
Selective hysteretic heating of multiple collocated sets of single domain magnetic nanoparticles (SDMNPs) by alternating magnetic fields (AMFs) may offer a useful tool for biomedical applications. The possibility of magnetothermal multiplexing has not yet been realized, in part due to prevalent use of linear response theory to model SDMNP heating in AMFs. Predictive successes of dynamic hysteresis (DH), a more generalized model for heat dissipation by SDMNPs, are observed experimentally with detailed calorimetry measurements performed at varied AMF amplitudes and frequencies. The DH model suggests that specific driving conditions play an underappreciated role in determining optimal material selection strategies for high heat dissipation. Motivated by this observation, magnetothermal multiplexing is theoretically predicted and empirically demonstrated for the first time by selecting SDMNPs with properties that suggest optimal hysteretic heat dissipation at dissimilar AMF driving conditions. This form of multiplexing could effectively create multiple channels for minimally invasive biological signaling applications.
Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials with a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as a function of an external in plane magnetic field. This is understood as a consequence of the inversion asymmetry of the system, yielding a finite chiral Dzyaloshinskii-Moriya interaction. Numerous attempts have been made to explain these observations using creep theory, but, in doing so, these have not included all contributions to the domain wall energy or have introduced additional free parameters. In this article we present a theory for creep motion of chiral domain walls in the creep regime that includes the most important contributions to the domain-wall energy and does not introduce new free parameters beyond the usual parameters that are included in the micromagnetic energy. Furthermore, we present experimental measurements of domain wall velocities as a function of in-plane field that are well decribed by our model, and from which material properties such as the strength of the Dzyaloshinskii-Moriya interaction and the demagnetization field are extracted.