Do you want to publish a course? Click here

Rise and fall of the X-ray flash 080330: an off-axis jet?

137   0   0.0 ( 0 )
 Added by Cristiano Guidorzi
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

X-ray flashes (XRFs) are a class of gamma-ray bursts (GRBs) with the peak energy of the time-integrated spectrum, Ep, below 30 keV, whereas classical GRBs have Ep of a few hundreds keV. Apart from Ep and the lower luminosity, the properties of XRFs are typical of the classical GRBs. Yet, the nature of XRFs and the differences from that of GRBs are not understood. In addition, there is no consensus on the interpretation of the shallow decay phase observed in most X-ray afterglows of both XRFs and GRBs. We examine in detail the case of XRF 080330 discovered by Swift at the redshift of 1.51. This burst is representative of the XRF class and exhibits an X-ray shallow decay. The rich and broadband (from NIR to UV) photometric data set we collected across this phase makes it an ideal candidate to test the off-axis jet interpretation proposed to explain both the softness of XRFs and the shallow decay phase. We present prompt gamma-ray, early and late IR/visible/UV and X-ray observations of the XRF 080330. We derive a SED from NIR to X-ray bands across the plateau phase with a power-law index of 0.79 +- 0.01 and negligible rest-frame dust extinction. The multi-wavelength evolution of the afterglow is achromatic from ~10^2 s out to ~8x10^4 s. We describe the temporal evolution of the multi-wavelength afterglow within the context of the standard afterglow model and show that a single-component jet viewed off-axis explains the observations (abriged).



rate research

Read More

213 - Yuji Urata 2015
We verified the off-axis jet model of X-ray flashes (XRFs) and examined a discovery of off-axis orphan gamma-ray burst (GRBs) afterglows. The XRF sample was selected on the basis of the following three factors: (1) a constraint on the lower peak energy of the prompt spectrum $E^{src}_{obs}$, (2) redshift measurements, and (3) multi-color observations of an earlier (or brightening) phase. XRF020903 was the only sample selected basis of these criteria. A complete optical multi-color afterglow light curve of XRF020903 obtained from archived data and photometric results in literature showed an achromatic brightening around 0.7 days. An off-axis jet model with a large observing angle (0.21 rad, which is twice the jet opening half-angle, $theta_{jet}$) can naturally describe the achromatic brightening and the prompt X-ray spectral properties. This result indicates the existence of off-axis orphan GRB afterglow light curves. Events with a larger viewing angle ($>sim2theta_{jet}$) could be discovered using an 8-m class telescope with wide field imagers such as Subaru Hyper-Suprime-Cam and the Large Synoptic Survey Telescope.
In light of the most recent observations of late afterglows produced by the merger of compact objects or by the core-collapse of massive dying stars, we research the evolution of the afterglow produced by an off-axis top-hat jet and its interaction with a surrounding medium. The medium is parametrized by a power law distribution of the form $n(r)propto r^{-k}$ is the stratification parameter and contains the development when the surrounding density is constant ($k=0$) or wind-like ($k=2$). We develop an analytical synchrotron forward-shock model when the outflow is viewed off-axis, and it is decelerated by a stratified medium. Using the X-ray data points collected by a large campaign of orbiting satellites and ground telescopes, we have managed to apply our model and fit the X-ray spectrum of the GRB afterglow associated to SN 2020bvc with conventional parameters. Our model predicts that its circumburst medium is parametrized by a power law with stratification parameter $k=1.5$.
We present new observations of the binary neutron star merger GW170817 at $Delta tapprox 220-290$ days post-merger, at radio (Karl G. Jansky Very Large Array; VLA), X-ray (Chandra X-ray Observatory) and optical (Hubble Space Telescope; HST) wavelengths. These observations provide the first evidence for a turnover in the X-ray light curve, mirroring a decline in the radio emission at $gtrsim5sigma$ significance. The radio-to-X-ray spectral energy distribution exhibits no evolution into the declining phase. Our full multi-wavelength dataset is consistent with the predicted behavior of our previously published models of a successful structured jet expanding into a low-density circumbinary medium, but pure cocoon models with a choked jet cannot be ruled out. If future observations continue to track our predictions, we expect that the radio and X-ray emission will remain detectable until $sim 1000$ days post-merger.
The X-ray emission of gamma-ray bursts (GRBs) is often characterized by an initial steep decay, followed by a nearly constant emission phase (so called plateau) which can extend up to thousands of seconds. While the steep decay is usually interpreted as the tail of the prompt gamma-ray flash, the long-lasting plateau is commonly associated to the emission from the external shock sustained by energy injection from a long lasting central engine. A recent study proposed an alternative interpretation, ascribing both the steep decay and the plateau to high-latitude emission (HLE) from a structured jet whose energy and bulk Lorentz factor depend on the angular distance from the jet symmetry axis. In this work we expand over this idea and explore more realistic conditions: (a) the finite duration of the prompt emission, (b) the angular dependence of the optical depth and (c) the lightcurve dependence on the observer viewing angle. We find that, when viewed highly off-axis, the structured jet HLE lightcurve is smoothly decaying with no clear distinction between the steep and flat phase, as opposed to the on-axis case. For a realistic choice of physical parameters, the effects of a latitude-dependent Thomson opacity and finite duration of the emission have a marginal effect on the overall lightcurve evolution. We discuss the possible HLE of GW170817, showing that the emission would have faded away long before the first Swift-XRT observations. Finally, we discuss the prospects for the detection of HLE from off-axis GRBs by present and future wide-field X-ray telescopes and X-ray surveys, such as eROSITA and the mission concept THESEUS.
We present the results of numerical simulations of the prompt emission of short-duration gamma-ray bursts. We consider emission from the relativistic jet, the mildly relativistic cocoon, and the non-relativistic shocked ambient material. We find that the cocoon material is confined between off-axis angles 15<theta<45 degrees and gives origin to X-ray transients with a duration of a few to ~10 seconds, delayed by a few seconds from the time of the merger. We also discuss the distance at which such transients can be detected, finding that it depends sensitively on the assumptions that are made about the radiation spectrum. Purely thermal cocoon transients are detectable only out to a few Mpc, Comptonized transients can instead be detected by the FERMI GBM out to several tens of Mpc.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا