Do you want to publish a course? Click here

Nearly Periodic Fluctuations in the Long Term X-ray Light Curves of the Blazars AO 0235+164 and 1ES 2321+419

117   0   0.0 ( 0 )
 Added by Alok Gupta Dr.
 Publication date 2009
  fields Physics
and research's language is English
 Authors Bindu Rani




Ask ChatGPT about the research

We have performed a structure function analysis of the Rossi X-ray Timing Explorer All Sky Monitor data to search for variability in 24 blazars using data trains that each exceed 12 years. Although 20 of them show nominal periods though this technique, the great majority of these `periods are clearly related to yearly variations arising from the instrument.Nonetheless, an apparently real periodic component of about 17 days was detected for the blazar AO 0235+164 and it was confirmed by discrete correlation function and periodogram analyses. For 1ES 2321+419 a component of variability with a near periodicity of about 420 days was detected by all of these methods. We discuss several possible explanations for these nearly periodic components and conclude that they most likely arise from the intersections of a shock propagating down a relativistic jet that possesses a helical structure.



rate research

Read More

We present time series analyses of three-decade long radio observations of the BL Lacertae object AO 0235+164 made at the University of Michigan Radio Astronomical Observatory operating at three central frequencies of 4.8 GHz, 8.0 GHz and 14.5 GHz. We detected a quasi-periodic oscillation of $sim$965 days in all three frequency bands in the light curve of the effectively simultaneous observations, along with strong signals at $sim$1950 d, $sim$1350 d, and $sim$660 d. The periodicity is analyzed with three methods: Data Compensated Discrete Fourier Transform, Generalized Lomb-Scargle Periodogram and Weighted Wavelet Z-transform. These methods are chosen as they have different analysis approaches toward robust measurement of claimed periodicities. The QPO at $965pm 50$ days is found to be significant (at least $3.5sigma$) and is persistent throughout the observation for all three radio frequencies, and the others, which may be harmonics, are comparably significant in at least the 8.0 GHz and 14.5 GHz bands. We briefly discuss plausible explanations for the origin of such long and persistent periodicity.
We report on multi-band photometric and polarimetric observations of the blazars AO 0235+164 and PKS 1510-089. These two blazars were active in 2008 and 2009, respectively. In these active states, prominent short flares were observed in both objects, having amplitudes of >1 mag within 10 d. The $V-J$ color became bluer when the objects were brighter in these flares. On the other hand, the color of PKS 1510-089 exhibited a trend that it became redder when it was brighter, except for its prominent flare. This redder-when-brighter trend can be explained by the strong contribution of thermal emission from an accretion disk. The polarization degree increased at the flares, and reached >25 % at the maxima. We compare these flares in AO 0235+164 and PKS 1510-089 with other short flares which were detected by our monitoring of 41 blazars. Those two flares had one of the largest variation amplitudes in both flux and polarization degree. Furthermore, we found a significant positive correlation between the amplitudes of the flux and polarization degree in the short flares. It indicates that the short flares originate from the region where the magnetic field is aligned.
86 - J.H. Fan , O. Kurtanidze , Y. Liu 2017
Variability is one of the extreme observational properties of BL Lacertae objects. AO 0235+164 is a well studied BL Lac through the whole electro-magnetic wavebands. In the present work, we show its optical R band photometric observations carried out during the period of Nov, 2006 to Dec. 2012 using the Ap6E CCD camera attached to the primary focus of the $rm 70-cm$ meniscus telescope at Abastumani Observatory, Georgia. It shows a large variation of $Delta R$ = 4.88 mag (14.19 - 19.07 mag) and a short time scale of $Delta T_v$ = 73.5 min during our monitoring period. During the period of Dec. 2006 to Nov. 2009, we made radio observations of the source using the 25-m radio telescope at Xinjiang Astronomical Observatory. When a discrete correlation function (DCF) is adopted to the optical and radio observations, we found that the optical variation leads the radio variation by 23.2$pm$12.9 days.
AO 0235+164 is a very compact, flat spectrum radio source identified as a BL Lac object at a redshift of z=0.94. It is one of the most violently variable extragalactic objects at both optical and radio wavelengths. The radio structure of the source revealed by various ground-based VLBI observations is dominated by a nearly unresolved compact component at almost all available frequencies. Dual-frequency space VLBI observations of AO 0235+164 were made with the VSOP mission in January-February 1999. The array of the Japanese HALCA satellite and co-observing ground radio telescopes in Australia, Japan, China and South Africa allowed us to study AO 0235+164 with an unprecedented angular resolution at frequencies of 1.6 and 5 GHz. We report on the sub-milliarcsecond structural properties of the source. The 5-GHz observations led to an estimate of T_B > 5.8 x 10^{13} K for the rest-frame brightness temperature of the core, which is the highest value measured with VSOP to date.
123 - Sergio A. Cellone 2007
We present optical photo-polarimetric observations with high temporal resolution of the blazar AO 0235+164. Our data, the first to test the photo-polarimetric behaviour of this object at very short time-scales, show significant micro-variability in total flux, colour index, linear polarization degree, and position angle. Strong inter-night variations are also detected for these parameters. Although no correlation between colour index and total flux was found, our data seem to support the general bluer-when-brighter trend already known for this object. The polarization degree, in turn, shows no correlation with total flux, but a clear trend in the sense that colour index is redder (the spectrum is softer) when the measured polarization is higher.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا