Do you want to publish a course? Click here

Dual-Frequency VSOP Observations of AO 0235+164

69   0   0.0 ( 0 )
 Added by Frey Sandor
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

AO 0235+164 is a very compact, flat spectrum radio source identified as a BL Lac object at a redshift of z=0.94. It is one of the most violently variable extragalactic objects at both optical and radio wavelengths. The radio structure of the source revealed by various ground-based VLBI observations is dominated by a nearly unresolved compact component at almost all available frequencies. Dual-frequency space VLBI observations of AO 0235+164 were made with the VSOP mission in January-February 1999. The array of the Japanese HALCA satellite and co-observing ground radio telescopes in Australia, Japan, China and South Africa allowed us to study AO 0235+164 with an unprecedented angular resolution at frequencies of 1.6 and 5 GHz. We report on the sub-milliarcsecond structural properties of the source. The 5-GHz observations led to an estimate of T_B > 5.8 x 10^{13} K for the rest-frame brightness temperature of the core, which is the highest value measured with VSOP to date.



rate research

Read More

66 - S. Frey 2005
In 1999, the highly compact and variable BL Lac object AO 0235+164 was identified as the highest brightness temperature active galactic nucleus observed with the VLBI Space Observatory Programme (VSOP), with T_B > 5.8 x 10^{13} K. The sub-milliarcsecond radio structure of this source has been studied with dual-frequency (1.6 and 5 GHz), polarization-sensitive VSOP observations during 2001 and 2002. Here we present the results of this monitoring campaign. At the time of these observations, the source was weakly polarized and characterized by a radio core that is clearly resolved on space-ground baselines.
138 - Sergio A. Cellone 2007
We present optical photo-polarimetric observations with high temporal resolution of the blazar AO 0235+164. Our data, the first to test the photo-polarimetric behaviour of this object at very short time-scales, show significant micro-variability in total flux, colour index, linear polarization degree, and position angle. Strong inter-night variations are also detected for these parameters. Although no correlation between colour index and total flux was found, our data seem to support the general bluer-when-brighter trend already known for this object. The polarization degree, in turn, shows no correlation with total flux, but a clear trend in the sense that colour index is redder (the spectrum is softer) when the measured polarization is higher.
The blazar AO 0235+164 (z = 0.94) has been one of the most active objects observed by Fermi Large Area Telescope (LAT) since its launch in Summer 2008. In addition to the continuous coverage by Fermi, contemporaneous observations were carried out from the radio to {gamma} -ray bands between 2008 September and 2009 February. In this paper, we summarize the rich multi-wavelength data collected during the campaign (including F-GAMMA, GASP- WEBT, Kanata, OVRO, RXTE, SMARTS, Swift, and other instruments), examine the cross-correlation between the light curves measured in the different energy bands, and interpret the resulting spectral energy distributions in the context of well-known blazar emission models. We find that the {gamma} -ray activity is well correlated with a series of near-IR/optical flares, accompanied by an increase in the optical polarization degree. On the other hand, the X-ray light curve shows a distinct 20 day high state of unusually soft spectrum, which does not match the extrapolation of the optical/UV synchrotron spectrum. We tentatively interpret this feature as the bulk Compton emission by cold electrons contained in the jet, which requires an accretion disk corona with an effective covering factor of 19% at a distance of 100 Rg . We model the broadband spectra with a leptonic model with external radiation dominated by the infrared emission from the dusty torus.
Clues to the physical conditions in radio cores of blazars come from measurements of brightness temperatures as well as effects produced by intrinsic opacity. We study the properties of the ultra compact blazar AO 0235+164 with RadioAstron ground-space radio interferometer, multi-frequency VLBA, EVN and single-dish radio observations. We employ visibility modeling and image stacking for deriving structure and kinematics of the source, and use Gaussian process regression to find the relative multi-band time delays of the flares. The multi-frequency core size and time lags support prevailing synchrotron self absorption. The intrinsic brightness temperature of the core derived from ground-based VLBI is close to the equipartition regime value. In the same time, there is evidence for ultra-compact features of the size of less than 10 $mu$as in the source, which might be responsible for the extreme apparent brightness temperatures of up to $10^{14}$ K as measured by RadioAstron. In 2007--2016 the VLBI components in the source at 43 GHz are found predominantly in two directions, suggesting a bend of the outflow from southern to northern direction. The apparent opening angle of the jet seen in the stacked image at 43 GHz is two times wider than that at 15 GHz, indicating a collimation of the flow within the central 1.5 mas. We estimate the Lorentz factor $Gamma = 14$, the Doppler factor $delta=21$, and the viewing angle $theta = 1.7^circ$ of the apparent jet base, derive the gradients of magnetic field strength and electron density in the outflow, and the distance between jet apex and the core at each frequency.
86 - J.H. Fan , O. Kurtanidze , Y. Liu 2017
Variability is one of the extreme observational properties of BL Lacertae objects. AO 0235+164 is a well studied BL Lac through the whole electro-magnetic wavebands. In the present work, we show its optical R band photometric observations carried out during the period of Nov, 2006 to Dec. 2012 using the Ap6E CCD camera attached to the primary focus of the $rm 70-cm$ meniscus telescope at Abastumani Observatory, Georgia. It shows a large variation of $Delta R$ = 4.88 mag (14.19 - 19.07 mag) and a short time scale of $Delta T_v$ = 73.5 min during our monitoring period. During the period of Dec. 2006 to Nov. 2009, we made radio observations of the source using the 25-m radio telescope at Xinjiang Astronomical Observatory. When a discrete correlation function (DCF) is adopted to the optical and radio observations, we found that the optical variation leads the radio variation by 23.2$pm$12.9 days.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا