Do you want to publish a course? Click here

A formation scenario of young stellar groups in the region of the Scorpio Centaurus OB association

92   0   0.0 ( 0 )
 Added by Evgueni Jilinski
 Publication date 2009
  fields Physics
and research's language is English
 Authors V. G. Ortega




Ask ChatGPT about the research

The main objective of this work is to investigate the role played by Lower Centaurus Crux (LCC) and Upper Centaurus Lupus (UCL), both subcomponents of the Scorpio Centaurus OB association (Sco-Cen), in the formation of the groups beta Pictoris, TW Hydrae and the eta Chamaeleontis cluster. The dynamical evolution of all the stellar groups involved and of the bubbles and shells blown by LCC and UCL are calculated and followed from the past to the present. This leads to a formation scenario in which (1) the groups beta Pictoris, TW Hydrae were formed in the wake of the shells created by LCC and UCL, (2) the young cluster eta Chamaeleontis was born as a consequence of the collision of the shells of LCC and UCL, and (3) the formation of Upper Scorpius (US), the other main subcomponent of the Sco-Cen association, may have been started by the same process that created eta Chamaeleontis.



rate research

Read More

We present a CO(2-1) and 1240 um continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.5-1 arcsec with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ~10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3-sigma) CO detections. Twenty disks were detected in the continuum at the >3-sigma level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independent analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broad-band spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.
We present results of a spectroscopic survey for new K- and M-type members of Scorpius-Centaurus (Sco-Cen), the nearest OB Association (~100-200 pc). Using an X-ray, proper motion and color-magnitude selected sample, we obtained spectra for 361 stars, for which we report spectral classifications and Li and Halpha equivalent widths. We identified 156 new members of Sco-Cen, and recovered 51 previously published members. We have combined these with previously known members to form a sample of 493 solar-mass (~0.7-1.3 Msun) members of Sco-Cen. We investigated the star-formation history of this sample, and re-assessed the ages of the massive main-sequence turn-off and the G-type members in all three subgroups. We performed a census for circumstellar disks in our sample using WISE infrared data and find a protoplanetary disk fraction for K-type stars of 4.4$^{+1.6}_{-0.9}$% for Upper Centaurus-Lupus and Lower Centaurus-Crux at ~16 Myr and 9.0$^{+4.0}_{-2.2}$% for Upper Scorpius at ~10 Myr. These data are consistent with a protoplanetary disk e-folding timescale of ~4-5 Myr for ~1 Msun stars, twice that previously quoted (Mamajek 2009), but consistent with the Bell et al. revised age scale of young clusters. Finally, we construct an age map of Scorpius-Centaurus which clearly reveals substructure consisting of concentrations of younger and older stars. We find evidence for strong age gradients within all three subgroups. None of the subgroups are consistent with being simple, coeval populations which formed in single bursts, but likely represents a multitude of smaller star formation episodes of hundreds to tens of stars each.
We present HK spectra of three sources located in the N66 region of the Small Magellanic Cloud. The sources display prominent stellar Br Gamma and extended H2 emission, and exhibit infrared excesses at lambda > 2 micron. Based on their spectral features, and photometric spectral energy distributions, we suggest that these sources are massive young stellar objects (mYSOs). The findings are interpreted as evidence of on-going high mass star formation in N66.
We present a detailed study of the complex ionization structure in a small (~250 pc) extended narrow line region (ENLR) cloud near Centaurus A using the Multi Unit Spectroscopic Explorer. This cloud is located in the so-called outer filament of ionized gas (about 15 kpc from the nucleus) where jet-induced star formation has been suggested to occur by different studies. We find that, despite the small size, a mixture of ionization mechanisms is operating, resulting in considerable complexity in the spatial ionization structure. The area includes two H II regions where star formation is occurring and another location where star formation must have ceased very recently. Interestingly, the extreme Balmer decrement of one of the star forming regions (H_alpha/H_beta~6) indicates that it is still heavily embedded in its natal cocoon of gas and dust. At all three locations a continuum counterpart is found with spectra matching those of O/B stars local to Centaurus A. The H II regions are embedded in a larger gas complex which is photoionized by the radiation of the central active galactic nucleus (AGN), but the O/B stars affect the spatial ionization pattern in the ENLR cloud very locally. In particular, in the surroundings of the youngest star forming region, we can isolate a tight mixing sequence in the diagnostic diagram going from gas with ionization due to a pure stellar continuum to gas only photoionized by the AGN. These results emphasize the complexity and the mixture of processes occurring in star forming regions under the influence of an AGN radiation. This is relevant for our understanding of AGN-induced star formation suggested to occur in a number of objects, including this region of Centaurus A. They also illustrate that these young stars influence the gas over only a limited region.
Observations of the galactic disk at mid-infrared and longer wavelengths reveal a wealth of structures indicating the existence of complexes of recent massive star formation. However, little or nothing is known about the stellar component of those complexes. We have carried out observations aiming at the identification of early-type stars in the direction of the bright infrared source RAFGL~5475, around which several interstellar medium structures usually associated with the presence of massive stars have been identified. Our observations have the potential of revealing the suspected but thus far unknown stellar component of the region around RAFGL~5475. We have carried out near-infrared imaging observations ($JHK_S$ bands) designed to reveal the presence of early-type stars based on their positions in color-color and color-magnitude diagrams centered on the location of RAFGL~5475. We took into account the possibility that candidates found might belong to a foreground population physically related either to M16 or M17, two giant HII regions lying midway between the Sun and RAFGL~5475. The near-infrared color-color diagram shows clear evidence for the presence of a moderately obscured population of early-type stars in the region imaged. By studying the distribution of extinction in their direction and basic characteristics of the interstellar medium we show that these new early-type stars are most likely associated with RAFGL~5475. By investigating the possible existence of massive early-type stars in the direction of RAFGL~5475 we have discovered the existence of a new OB association. A very preliminary assessment of its contents suggests the presence of several O-type stars, some of them likely to be associated with structures in the interstellar medium. The new association is located at 4 kpc from the Sun in the Scutum-Centaurus arm.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا