No Arabic abstract
Using gamma-ray data collected by the Astrorivelatore Gamma ad Immagini LEggero (AGILE) satellite over a period of almost one year (from 2007 July to 2008 June), we searched for pulsed signals from 35 potentially interesting radio pulsars, ordered according to $F_{gamma}propto sqrt{dot{E}} d^{-2}$ and for which contemporary or recent radio data were available. AGILE detected three new top-ranking nearby and Vela-like pulsars with good confidence both through timing and spatial analysis. Among the newcomers we find pulsars with very high rotational energy losses, such as the remarkable PSR B1509-58 with a magnetic field in excess of 10^13 Gauss, and PSR J2229+6114 providing a reliable identification for the previously unidentified EGRET source 3EG 2227+6122. Moreover, the powerful millisecond pulsar B1821-24, in the globular cluster M28, is detected during a fraction of the observations. Four other promising gamma-ray pulsar candidates, among which is the notable J2043+2740 with an age in excess of 1 million years, show a possible detection in the timing analysis only and deserve confirmation.
We report on the results of a recent blind search survey for gamma-ray pulsars in Fermi Large Area Telescope (LAT) data being carried out on the distributed volunteer computing system, Einstein@Home. The survey has searched for pulsations in 118 unidentified pulsar-like sources, requiring about 10,000 years of CPU core time. In total, this survey has resulted in the discovery of 17 new gamma-ray pulsars, of which 13 are newly reported in this work, and an accompanying paper. These pulsars are all young, isolated pulsars with characteristic ages between 12 kyr and 2 Myr, and spin-down powers between $10^{34}$ and $4times10^{36}$ erg/s. Two of these are the slowest spinning gamma-ray pulsars yet known. One pulsar experienced a very large glitch $Delta f/f approx 3.5times10^{-6}$ during the Fermi mission. In this, the first of two associated papers, we describe the search scheme used in this survey, and estimate the sensitivity of our search to pulsations in unidentified Fermi-LAT sources. One such estimate results in an upper limit of 57% for the fraction of pulsed emission from the gamma-ray source associated with the Cas A supernova remnant, constraining the pulsed gamma-ray photon flux that can be produced by the neutron star at its center. We also present the results of precise timing analyses for each of the newly detected pulsars.
We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs J1803-2149 and J2111+4606, are young and energetic Galactic-plane pulsars (spin-down power above 6e35 erg/s and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J0622+3749, J1620-4927, J1746-3239, J2028+3332, J2030+4415, J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| > 10 deg). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2e11 G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3e33 erg/s) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.
Since its early phases of operation, the AGILE mission is successfully observing Gamma Ray Bursts (GRBs) in the hard X-ray band with the SuperAGILE imager and in the MeV range with the Mini-Calorimeter. Up to now, three firm GRB detections were obtained above 25 MeV and some bursts were detected with lower statistical confidence in the same energy band. When a GRB is localized, either by SuperAGILE or Swift/BAT or INTEGRAL/IBIS or Fermi/GBM or IPN, inside the field of view of the Gamma Ray Imager of AGILE, a detection is searched for in the gamma ray band or an upper limit is provided. A promising result of AGILE is the detection of very short gamma ray transients, a few ms in duration and possibly identified with Terrestrial Gamma-ray Flashes. In this paper we show the current status of the observation of Gamma Ray Bursts and Terrestrial Gamma-ray Flashes with AGILE.
Since its launch in April 2007, the AGILE satellite detected with its Gamma-Ray Imaging Detector (GRID) several blazars at high significance: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421 and PKS 0537-441. Moreover, AGILE was able both to rapidly respond to sudden changes in blazar activity state at other wavelengths and to alert other telescopes quickly in response to changes in the gamma-ray fluxes. Thus, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, as well as radio-to-optical coverage by means of the GASP Project of the WEBT and REM. This large multifrequency coverage gave us the opportunity to study the Spectral Energy Distribution of these sources from radio to gamma-rays energy bands and to investigate the different mechanisms responsible for their emission. We present an overview of the AGILE results on these gamma-ray blazars and the relative multifrequency data.
Diffuse galactic gamma-ray emission is produced by the interaction of cosmic rays (CRs) with the interstellar environment. The study of gamma-ray emission is therefore a powerful tool to investigate the origin of CRs and the processes through which they are accelerated. We aim to gain deeper insights of the nature of gamma-ray emission in the region of Orion, which is one of the best studied sites of on-going star formation, by analysing data from the AGILE satellite. The diffuse gamma-ray emission expected from the Orion region is relatively high. Its separation from the galactic plane also ensures a very low contribution from foreground or background emission, which makes it an ideal site for studying the processes of particle acceleration in star forming environments. The AGILE data are modelled through a template that quantifies the gamma-ray diffuse emission expected from atomic and molecular hydrogen. Other sources of emission are modelled as an isotropic contribution. Gamma-ray emission exceeding the amount expected by the diffuse emission model is detected with high level of significance. The main excess is in the high-longitude part of Orion A. A thorough analysis of this feature suggests a connection between the observed gamma-ray emission and the B0.5 Ia star k Orionis. The location of the gamma-ray excess is compatible with the site where stellar wind collides with the ISM. Both scattering on dark gas and cosmic-ray acceleration at the shock between the two environments are discussed as possible explanations, with the latter hypothesis being supported by the hardness of the energy spectrum of the emission. If confirmed, this would be the first direct detection of gamma-ray emission from the interaction between ISM and a single stars stellar wind.