No Arabic abstract
We report the discovery of nine previously unknown gamma-ray pulsars in a blind search of data from the Fermi Large Area Telescope (LAT). The pulsars were found with a novel hierarchical search method originally developed for detecting continuous gravitational waves from rapidly rotating neutron stars. Designed to find isolated pulsars spinning at up to kHz frequencies, the new method is computationally efficient, and incorporates several advances, including a metric-based gridding of the search parameter space (frequency, frequency derivative and sky location) and the use of photon probability weights. The nine pulsars have spin frequencies between 3 and 12 Hz, and characteristic ages ranging from 17 kyr to 3 Myr. Two of them, PSRs J1803-2149 and J2111+4606, are young and energetic Galactic-plane pulsars (spin-down power above 6e35 erg/s and ages below 100 kyr). The seven remaining pulsars, PSRs J0106+4855, J0622+3749, J1620-4927, J1746-3239, J2028+3332, J2030+4415, J2139+4716, are older and less energetic; two of them are located at higher Galactic latitudes (|b| > 10 deg). PSR J0106+4855 has the largest characteristic age (3 Myr) and the smallest surface magnetic field (2e11 G) of all LAT blind-search pulsars. PSR J2139+4716 has the lowest spin-down power (3e33 erg/s) among all non-recycled gamma-ray pulsars ever found. Despite extensive multi-frequency observations, only PSR J0106+4855 has detectable pulsations in the radio band. The other eight pulsars belong to the increasing population of radio-quiet gamma-ray pulsars.
The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope (formerly GLAST), with its improved sensitivity relative to previous generation gamma-ray telescopes, is significantly increasing the number of known gamma-ray sources in the sky, including pulsars. In addition to searching for gamma-ray emission from known radio pulsars, it is now possible to successfully perform blind searches for pulsars on the gamma-ray data alone, with the goal of uncovering a new population of potentially radio-quiet (Geminga-like) pulsars. We describe our methods and some recent results from our searches, performed using the time-differencing technique, which have resulted in the discovery of a large number of new gamma-ray pulsars.
We report the discovery of eight gamma-ray pulsars in blind frequency searches using the LAT, onboard the Fermi Gamma-ray Space Telescope. Five of the eight pulsars are young (tau_c<100 kyr), energetic (Edot>10^36 erg/s), and located within the Galactic plane (|b|<3 deg). The remaining three are older, less energetic, and located off the plane. Five pulsars are associated with sources included in the LAT bright gamma-ray source list, but only one, PSR J1413-6205, is clearly associated with an EGRET source. PSR J1023-5746 has the smallest characteristic age (tau_c=4.6 kyr) and is the most energetic (Edot=1.1E37 erg/s) of all gamma-ray pulsars discovered so far in blind searches. PSRs J1957+5033 and J2055+25 have the largest characteristic ages (tau_c~1 Myr) and are the least energetic (Edot~5E33 erg/s) of the newly-discovered pulsars. We present the timing models, light curves, and detailed spectral parameters of the new pulsars. We used recent XMM observations to identify the counterpart of PSR J2055+25 as XMMU J205549.4+253959. In addition, publicly available archival Chandra X-ray data allowed us to identify the likely counterpart of PSR J1023-5746 as a faint, highly absorbed source, CXOU J102302.8-574606. The large X-ray absorption indicates that this could be among the most distant gamma-ray pulsars detected so far. PSR J1023-5746 is positionally coincident with the TeV source HESS J1023-575, located near the young stellar cluster Westerlund 2, while PSR J1954+2836 is coincident with a 4.3 sigma excess reported by Milagro at a median energy of 35 TeV. Deep radio follow-up observations of the eight pulsars resulted in no detections of pulsations and upper limits comparable to the faintest known radio pulsars, indicating that these can be included among the growing population of radio-quiet pulsars in our Galaxy being uncovered by the LAT, and currently numbering more than 20.
We report the discovery of four gamma-ray pulsars, detected in computing-intensive blind searches of data from the Fermi Large Area Telescope (LAT). The pulsars were found using a novel search approach, combining volunteer distributed computing via Einstein@Home and methods originally developed in gravitational-wave astronomy. The pulsars PSRs J0554+3107, J1422-6138, J1522-5735, and J1932+1916 are young and energetic, with characteristic ages between 35 and 56 kyr and spin-down powers in the range $6times10^{34}$ - $10^{36}$ erg s$^{-1}$. They are located in the Galactic plane and have rotation rates of less than 10 Hz, among which the 2.1 Hz spin frequency of PSR J0554+3107 is the slowest of any known gamma-ray pulsar. For two of the new pulsars, we find supernova remnants coincident on the sky and discuss the plausibility of such associations. Deep radio follow-up observations found no pulsations, suggesting that all four pulsars are radio-quiet as viewed from Earth. These discoveries, the first gamma-ray pulsars found by volunteer computing, motivate continued blind pulsar searches of the many other unidentified LAT gamma-ray sources.
Fast Radio Bursts (FRBs) are a mysterious flash phenomenon detected in radio wavelengths with a duration of only a few milliseconds, and they may also have prompt gamma-ray flashes. Here we carry out a blind search for msec-duration gamma-ray flashes using the 7-year Fermi Large Area Telescope (Fermi-LAT) all-sky gamma-ray data. About 100 flash candidates are detected, but after removing those associated with bright steady point sources, we find no flash events at high Galactic latitude region (|b|>20 deg). Events at lower latitude regions are consistent with statistical flukes originating from the diffuse gamma-ray background. From these results, we place an upper limit on the GeV gamma-ray to radio flux ratio of FRBs as xi equiv (nu L_nu)_gamma / (nu L_nu)_radio < 10^8, depending on the assumed FRB rate evolution. This limit is comparable with the largest value found for pulsars, though xi of pulsars is distributed in a wide range. We also compare this limit with the spectral energy distribution of the 2004 giant flare of the magnetar SGR 1806-20.
The Large Area Telescope (LAT) on Fermi has detected ~150 gamma-ray pulsars, about a third of which were discovered in blind searches of the $gamma$-ray data. Because the angular resolution of the LAT is relatively poor and blind searches for pulsars (especially millisecond pulsars, MSPs) are very sensitive to an error in the position, one must typically scan large numbers of locations. Identifying plausible X-ray counterparts of a putative pulsar drastically reduces the number of trials, thus improving the sensitivity of pulsar blind searches with the LAT. I discuss our ongoing program of Swift, XMM-Newton, and Chandra observations of LAT unassociated sources in the context of our blind searches for gamma-ray pulsars.