Do you want to publish a course? Click here

A Multiwavelength Study of Young Massive Star-Forming Regions. III. Mid-Infrared Emission

163   0   0.0 ( 0 )
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present mid-infrared (MIR) observations, made with the TIMMI2 camera on the ESO 3.6 m telescope, toward 14 young massive star-forming regions. All regions were imaged in the N band, and nine in the Q band, with an angular resolution of ~ 1 arcsec. Typically, the regions exhibit a single or two compact sources (with sizes in the range 0.008-0.18 pc) plus extended diffuse emission. The Spitzer-Galactic Legacy Infrared Mid-Plane Survey Extraordinaire images of these regions show much more extended emission than that seen by TIMMI2, and this is attributed to polycyclic aromatic hydrocarbon (PAH) bands. For the MIR sources associated with radio continuum radiation (Paper I) there is a close morphological correspondence between the two emissions, suggesting that the ionized gas (radio source) and hot dust (MIR source) coexist inside the H II region. We found five MIR compact sources which are not associated with radio continuum emission, and are thus prime candidates for hosting young massive protostars. In particular, objects IRAS 14593-5852 II (only detected at 17.7 microns) and 17008-4040 I are likely to be genuine O-type protostellar objects. We also present TIMMI2 N-band spectra of eight sources, all of which are dominated by a prominent silicate absorption feature (~ 9.7 microns). From these data we estimate column densities in the range (7-17)x10^22 cm^-2, in good agreement with those derived from the 1.2 mm data (Paper II). Seven sources show bright [Ne II] line emission, as expected from ionized gas regions. Only IRAS 123830-6128 shows detectable PAH emission at 8.6 and 11.3 microns.



rate research

Read More

We present observations of 1.2-mm dust continuum emission, made with the Swedish ESO Submillimeter Telescope, towards eighteen luminous IRAS point sources, all with colors typical of compact HII regions and associated with CS(2-1) emission, thought to be representative of young massive star forming regions. Emission was detected toward all the IRAS objects. We find that the 1.2-mm sources associated with them have distinct physical parameters, namely sizes of 0.4 pc, dust temperatures of 30 K, masses of 2x10^3 Msun, column densities of 3x10^23 cm^-2, and densities of 4x10^5 cm^-3. We refer to these dust structures as massive and dense cores. Most of the 1.2-mm sources show single-peaked structures, several of which exhibit a bright compact peak surrounded by a weaker extended envelope. The observed radial intensity profiles of sources with this type of morphology are well fitted with power-law intensity profiles with power-law indices in the range 1.0-1.7. This result indicates that massive and dense cores are centrally condensed, having radial density profiles with power-law indices in the range 1.5-2.2. We also find that the UC HII regions detected with ATCA towards the IRAS sources investigated here (Paper I) are usually projected at the peak position of the 1.2-mm dust continuum emission, suggesting that massive stars are formed at the center of the centrally condensed massive and dense cores.
We present a multiwavelength study of 28 Galactic massive star-forming H II regions. For 17 of these regions, we present new distance measurements based on Gaia DR2 parallaxes. By fitting a multicomponent dust, blackbody, and power-law continuum model to the 3.6 $mu$m through 10 mm spectral energy distributions, we find that ${sim}34$% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ${sim}68$% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates $N_C ge 10^{50}~{rm s}^{-1}$ and dust-processed $L_{rm TIR}ge 10^{6.8}$ L$_{odot}$) have on average higher percentages of absorbed Lyman continuum photons ($sim$51%) and reprocessed starlight ($sim$82%) compared to less luminous regions. Luminous H II regions show lower average PAH fractions than less luminous regions, implying that the strong radiation fields from early-type massive stars are efficient at destroying PAH molecules. On average, the monochromatic luminosities at 8, 24, and 70 $mu$m combined carry 94% of the dust-reprocessed $L_{rm TIR}$. $L_{70}$ captures ${sim}52$% of $L_{rm TIR}$, and is therefore the preferred choice to infer the bolometric luminosity of dusty star-forming regions. We calibrate SFRs based on $L_{24}$ and $L_{70}$ against the Lyman continuum photon rates of the massive stars in each region. Standard extragalactic calibrations of monochromatic SFRs based on population synthesis models are generally consistent with our values.
119 - J. M. De Buizer 2004
We present here a mid-infrared imaging survey of 26 sites of water maser emission. Observations were obtained at the InfraRed Telescope Facility 3-m telescope with the University of Florida mid-infrared imager/spectrometer OSCIR, and the JPL mid-infrared camera MIRLIN. The main purpose of the survey was to explore the relationship between water masers and the massive star formation process. It is generally believed that water masers predominantly trace outflows and embedded massive stellar objects, but may also exist in circumstellar disks around young stars. We investigate each of these possibilities in light of our mid-infrared imaging. We find that mid-infrared emission seems to be more closely associated with water and OH maser emission than cm radio continuum emission from UC HII regions. We also find from the sample of sources in our survey that, like groups of methanol masers, both water and OH masers have a proclivity for grouping into linear or elongated distributions. We conclude that the vast majority of linearly distributed masers are not tracing circumstellar disks, but outflows and shocks instead.
Using the star cluster catalogs from the Hubble Space Telescope program Legacy ExtraGalactic UV survey (LEGUS) and 8 $mu$m images from the IRAC camera on the Spitzer Space Telescope for 5 galaxies within 5 Mpc, we investigate how the 8 $mu$m dust luminosity correlates with the stellar age on the 30--50 pc scale of star forming regions. We construct a sample of 97 regions centered at local peaks of 8 $mu$m emission, each containing one or more young star cluster candidates from the LEGUS catalogs. We find a tight anti-correlation with a Pearson correlation coefficient of $r=-0.84pm0.05$ between the mass-normalized dust-only 8 $mu$m luminosity and the age of stellar clusters younger than 1 Gyr; the 8 $mu$m luminosity decreases with increasing age of the stellar population. Simple assumptions on a combination of stellar and dust emission models reproduce the observed trend. We also explore how the scatter of the observed trend depends on assumptions of stellar metallicity, PAH abundance, fraction of stellar light absorbed by dust, and instantaneous versus continuous star formation models. We find that variations in stellar metallicity have little effect on the scatter, while PAH abundance and the fraction of dust-absorbed light bracket the full range of the data. We also find that the trend is better explained by continuous star formation, rather than instantaneous burst models. We ascribe this result to the presence of multiple star clusters with different ages in many of the regions. Upper limits of the dust-only 8 $mu$m emission as a function of age are provided.
Imaging polarimetry is a useful tool to reveal the 3D structure of dust distributions and to localize embedded young stellar objects. We present maps of the linear polarization at 2.2 micron for three ultra-compact HII regions (G192.16-3.82, G331.28-0.19, G339.88-1.26) and the methanol maser source G305.21+0.21. From the polarization maps, we draw conclusions on the morphology of these objects and the presence of luminous illuminating sources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا