Do you want to publish a course? Click here

A Time-Periodic Lyapunov Approach for Motion Planning of Controllable Driftless Systems on SU(n)

92   0   0.0 ( 0 )
 Added by Pierre Rouchon
 Publication date 2009
  fields
and research's language is English




Ask ChatGPT about the research

For a right-invariant and controllable driftless system on SU(n), we consider a time-periodic reference trajectory along which the linearized control system generates su(n): such trajectories always exist and constitute the basic ingredient of Corons Return Method. The open-loop controls that we propose, which rely on a left-invariant tracking error dynamics and on a fidelity-like Lyapunov function, are determined from a finite number of left-translations of the tracking error and they assure global asymptotic convergence towards the periodic reference trajectory. The role of these translations is to avoid being trapped in the critical region of this Lyapunov-like function. The convergence proof relies on a periodic version of LaSalles invariance principle and the control values are determined by numerical integration of the dynamics of the system. Simulations illustrate the obtained controls for $n=4$ and the generation of the C--NOT quantum gate.



rate research

Read More

73 - M. Sigalotti 2019
We study a driftless system on a three-dimensional manifold driven by two scalar controls. We assume that each scalar control has an independent bound on its modulus and we prove that, locally around every point where the controlled vector fields satisfy some suitable nondegeneracy Lie bracket condition, every time-optimal trajectory has at most five bang or singular arcs. The result is obtained using first-and second-order necessary conditions for optimality.
We propose a novel method for motion planning and illustrate its implementation on several canonical examples. The core novel idea underlying the method is to define a metric for which a path of minimal length is an admissible path, that is path that respects the various constraints imposed by the environment and the physics of the system on its dynamics. To be more precise, our method takes as input a control system with holonomic and non-holonomic constraints, an initial and final point in configuration space, a description of obstacles to avoid, and an initial trajectory for the system, called a sketch. This initial trajectory does not need to meet the constraints, except for the obstacle avoidance constraints. The constraints are then encoded in an inner product, which is used to deform (via a homotopy) the initial sketch into an admissible trajectory from which controls realizing the transfer can be obtained. We illustrate the method on various examples, including vehicle motion with obstacles and a two-link manipulator problem.
We present a new method for motion planning for control systems. The method aims to provide a natural computational framework in which a broad class of motion planning problems can be cast; including problems with holonomic and non-holonomic constraints, drift dynamics, obstacle constraints and constraints on the magnitudes of the applied controls. The method, which finds its inspiration in recent work on the so-called geometric heat flows and curve shortening flows, relies on a hereby introduced partial differential equation, which we call the affine geometric heat flow, which evolves an arbitrary differentiable path joining initial to final state in configuration space to a path that meets the constraints imposed on the problem. From this path, controls to be applied on the system can be extracted. We provide conditions guaranteeing that the controls extracted will drive the system arbitrarily close to the desired final state, while meeting the imposed constraints and illustrate the method on three canonical examples.
With the development of robotics, there are growing needs for real time motion planning. However, due to obstacles in the environment, the planning problem is highly non-convex, which makes it difficult to achieve real time computation using existing non-convex optimization algorithms. This paper introduces the convex feasible set algorithm (CFS) which is a fast algorithm for non-convex optimization problems that have convex costs and non-convex constraints. The idea is to find a convex feasible set for the original problem and iteratively solve a sequence of subproblems using the convex constraints. The feasibility and the convergence of the proposed algorithm are proved in the paper. The application of this method on motion planning for mobile robots is discussed. The simulations demonstrate the effectiveness of the proposed algorithm.
We propose a sampling-based approach to learn Lyapunov functions for a class of discrete-time autonomous hybrid systems that admit a mixed-integer representation. Such systems include autonomous piecewise affine systems, closed-loop dynamics of linear systems with model predictive controllers, piecewise affine/linear complementarity/mixed-logical dynamical system in feedback with a ReLU neural network controller, etc. The proposed method comprises an alternation between a learner and a verifier to find a valid Lyapunov function inside a convex set of Lyapunov function candidates. In each iteration, the learner uses a collection of state samples to select a Lyapunov function candidate through a convex program in the parameter space. The verifier then solves a mixed-integer quadratic program in the state space to either validate the proposed Lyapunov function candidate or reject it with a counterexample, i.e., a state where the Lyapunov condition fails. This counterexample is then added to the sample set of the learner to refine the set of Lyapunov function candidates. By designing the learner and the verifier according to the analytic center cutting-plane method from convex optimization, we show that when the set of Lyapunov functions is full-dimensional in the parameter space, our method finds a Lyapunov function in a finite number of steps. We demonstrate our stability analysis method on closed-loop MPC dynamical systems and a ReLU neural network controlled PWA system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا