No Arabic abstract
With the development of robotics, there are growing needs for real time motion planning. However, due to obstacles in the environment, the planning problem is highly non-convex, which makes it difficult to achieve real time computation using existing non-convex optimization algorithms. This paper introduces the convex feasible set algorithm (CFS) which is a fast algorithm for non-convex optimization problems that have convex costs and non-convex constraints. The idea is to find a convex feasible set for the original problem and iteratively solve a sequence of subproblems using the convex constraints. The feasibility and the convergence of the proposed algorithm are proved in the paper. The application of this method on motion planning for mobile robots is discussed. The simulations demonstrate the effectiveness of the proposed algorithm.
To move through the world, mobile robots typically use a receding-horizon strategy, wherein they execute an old plan while computing a new plan to incorporate new sensor information. A plan should be dynamically feasible, meaning it obeys constraints like the robots dynamics and obstacle avoidance; it should have liveness, meaning the robot does not stop to plan so frequently that it cannot accomplish tasks; and it should be optimal, meaning that the robot tries to satisfy a user-specified cost function such as reaching a goal location as quickly as possible. Reachability-based Trajectory Design (RTD) is a planning method that can generate provably dynamically-feasible plans. However, RTD solves a nonlinear polynmial optimization program at each planning iteration, preventing optimality guarantees; furthermore, RTD can struggle with liveness because the robot must brake to a stop when the solver finds local minima or cannot find a feasible solution. This paper proposes RTD*, which certifiably finds the globally optimal plan (if such a plan exists) at each planning iteration. This method is enabled by a novel Parallelized Constrained Bernstein Algorithm (PCBA), which is a branch-and-bound method for polynomial optimization. The contributions of this paper are: the implementation of PCBA; proofs of bounds on the time and memory usage of PCBA; a comparison of PCBA to state of the art solvers; and the demonstration of PCBA/RTD* on a mobile robot. RTD* outperforms RTD in terms of optimality and liveness for real-time planning in a variety of environments with randomly-placed obstacles.
This paper studies existing direct transcription methods for trajectory optimization applied to robot motion planning. There are diverse alternatives for the implementation of direct transcription. In this study we analyze the effects of such alternatives when solving a robotics problem. Different parameters such as integration scheme, number of discretization nodes, initialization strategies and complexity of the problem are evaluated. We measure the performance of the methods in terms of computational time, accuracy and quality of the solution. Additionally, we compare two optimization methodologies frequently used to solve the transcribed problem, namely Sequential Quadratic Programming (SQP) and Interior Point Method (IPM). As a benchmark, we solve different motion tasks on an underactuated and non-minimal-phase ball-balancing robot with a 10 dimensional state space and 3 dimensional input space. Additionally, we validate the results on a simulated 3D quadrotor. Finally, as a verification of using direct transcription methods for trajectory optimization on real robots, we present hardware experiments on a motion task including path constraints and actuation limits.
Stochastic convex optimization problems with expectation constraints (SOECs) are encountered in statistics and machine learning, business, and engineering. In data-rich environments, the SOEC objective and constraints contain expectations defined with respect to large datasets. Therefore, efficient algorithms for solving such SOECs need to limit the fraction of data points that they use, which we refer to as algorithmic data complexity. Recent stochastic first order methods exhibit low data complexity when handling SOECs but guarantee near-feasibility and near-optimality only at convergence. These methods may thus return highly infeasible solutions when heuristically terminated, as is often the case, due to theoretical convergence criteria being highly conservative. This issue limits the use of first order methods in several applications where the SOEC constraints encode implementation requirements. We design a stochastic feasible level set method (SFLS) for SOECs that has low data complexity and emphasizes feasibility before convergence. Specifically, our level-set method solves a root-finding problem by calling a novel first order oracle that computes a stochastic upper bound on the level-set function by extending mirror descent and online validation techniques. We establish that SFLS maintains a high-probability feasible solution at each root-finding iteration and exhibits favorable iteration complexity compared to state-of-the-art deterministic feasible level set and stochastic subgradient methods. Numerical experiments on three diverse applications validate the low data complexity of SFLS relative to the former approach and highlight how SFLS finds feasible solutions with small optimality gaps significantly faster than the latter method.
We propose a novel method for motion planning and illustrate its implementation on several canonical examples. The core novel idea underlying the method is to define a metric for which a path of minimal length is an admissible path, that is path that respects the various constraints imposed by the environment and the physics of the system on its dynamics. To be more precise, our method takes as input a control system with holonomic and non-holonomic constraints, an initial and final point in configuration space, a description of obstacles to avoid, and an initial trajectory for the system, called a sketch. This initial trajectory does not need to meet the constraints, except for the obstacle avoidance constraints. The constraints are then encoded in an inner product, which is used to deform (via a homotopy) the initial sketch into an admissible trajectory from which controls realizing the transfer can be obtained. We illustrate the method on various examples, including vehicle motion with obstacles and a two-link manipulator problem.
Real-time motion planning is a vital function of robotic systems. Different from existing roadmap algorithms which first determine the free space and then determine the collision-free path, researchers recently proposed several convex relaxation based smoothing algorithms which first select an initial path to link the starting configuration and the goal configuration and then reshape this path to meet other requirements (e.g., collision-free conditions) by using convex relaxation. However, convex relaxation based smoothing algorithms often fail to give a satisfactory path, since the initial paths are selected randomly. Moreover, the curvature constraints were not considered in the existing convex relaxation based smoothing algorithms. In this paper, we show that we can first grid the whole configuration space to pick a candidate path and reshape this shortest path to meet our goal. This new algorithm inherits the merits of the roadmap algorithms and the convex feasible set algorithm. We further discuss how to meet the curvature constraints by using both the Beamlet algorithm to select a better initial path and an iterative optimization algorithm to adjust the curvature of the path. Theoretical analyzing and numerical testing results show that it can almost surely find a feasible path and use much less time than the recently proposed convex feasible set algorithm.