Do you want to publish a course? Click here

Metric Subregularity and the Proximal Point Method

116   0   0.0 ( 0 )
 Added by Dennis Leventhal
 Publication date 2009
  fields
and research's language is English
 Authors D. Leventhal




Ask ChatGPT about the research

We examine the linear convergence rates of variants of the proximal point method for finding zeros of maximal monotone operators. We begin by showing how metric subregularity is sufficient for linear convergence to a zero of a maximal monotone operator. This result is then generalized to obtain convergence rates for the problem of finding a common zero of multiple monotone operators by considering randomized and averaged proximal methods.



rate research

Read More

149 - A.S. Lewis , S.J. Wright 2015
We consider minimization of functions that are compositions of convex or prox-regular functions (possibly extended-valued) with smooth vector functions. A wide variety of important optimization problems fall into this framework. We describe an algorithmic framework based on a subproblem constructed from a linearized approximation to the objective and a regularization term. Properties of local solutions of this subproblem underlie both a global convergence result and an identification property of the active manifold containing the solution of the original problem. Preliminary computational results on both convex and nonconvex examples are promising.
In this paper, we focus on solving a class of constrained non-convex non-concave saddle point problems in a decentralized manner by a group of nodes in a network. Specifically, we assume that each node has access to a summand of a global objective function and nodes are allowed to exchange information only with their neighboring nodes. We propose a decentralized variant of the proximal point method for solving this problem. We show that when the objective function is $rho$-weakly convex-weakly concave the iterates converge to approximate stationarity with a rate of $mathcal{O}(1/sqrt{T})$ where the approximation error depends linearly on $sqrt{rho}$. We further show that when the objective function satisfies the Minty VI condition (which generalizes the convex-concave case) we obtain convergence to stationarity with a rate of $mathcal{O}(1/sqrt{T})$. To the best of our knowledge, our proposed method is the first decentralized algorithm with theoretical guarantees for solving a non-convex non-concave decentralized saddle point problem. Our numerical results for training a general adversarial network (GAN) in a decentralized manner match our theoretical guarantees.
140 - Kuang Bai , Jane Ye , Jin Zhang 2019
In this paper we study sufficient conditions for metric subregularity of a set-valued map which is the sum of a single-valued continuous map and a locally closed subset. First we derive a sufficient condition for metric subregularity which is weaker than the so-called first-order sufficient condition for metric subregularity (FOSCMS) by adding an extra sequential condition. Then we introduce a directional version of the quasi-normality and the pseudo-normality which is stronger than the new {weak} sufficient condition for metric subregularity but is weaker than the classical quasi-normality and pseudo-normality respectively. Moreover we introduce a nonsmooth version of the second-order sufficient condition for metric subregularity and show that it is a sufficient condition for the new sufficient condition for metric {sub}regularity to hold. An example is used to illustrate that the directional pseduo-normality can be weaker than FOSCMS. For the class of set-valued maps where the single-valued mapping is affine and the abstract set is the union of finitely many convex polyhedral sets, we show that the pseudo-normality and hence the directional pseudo-normality holds automatically at each point of the graph. Finally we apply our results to the complementarity and the Karush-Kuhn-Tucker systems.
Minimax optimization has become a central tool in machine learning with applications in robust optimization, reinforcement learning, GANs, etc. These applications are often nonconvex-nonconcave, but the existing theory is unable to identify and deal with the fundamental difficulties this poses. In this paper, we study the classic proximal point method (PPM) applied to nonconvex-nonconcave minimax problems. We find that a classic generalization of the Moreau envelope by Attouch and Wets provides key insights. Critically, we show this envelope not only smooths the objective but can convexify and concavify it based on the level of interaction present between the minimizing and maximizing variables. From this, we identify three distinct regions of nonconvex-nonconcave problems. When interaction is sufficiently strong, we derive global linear convergence guarantees. Conversely when the interaction is fairly weak, we derive local linear convergence guarantees with a proper initialization. Between these two settings, we show that PPM may diverge or converge to a limit cycle.
268 - Li Shen , Peng Sun , Yitong Wang 2018
We propose a novel algorithmic framework of Variable Metric Over-Relaxed Hybrid Proximal Extra-gradient (VMOR-HPE) method with a global convergence guarantee for the maximal monotone operator inclusion problem. Its iteration complexities and local linear convergence rate are provided, which theoretically demonstrate that a large over-relaxed step-size contributes to accelerating the proposed VMOR-HPE as a byproduct. Specifically, we find that a large class of primal and primal-dual operator splitting algorithms are all special cases of VMOR-HPE. Hence, the proposed framework offers a new insight into these operator splitting algorithms. In addition, we apply VMOR-HPE to the Karush-Kuhn-Tucker (KKT) generalized equation of linear equality constrained multi-block composite convex optimization, yielding a new algorithm, namely nonsymmetric Proximal Alternating Direction Method of Multipliers with a preconditioned Extra-gradient step in which the preconditioned metric is generated by a blockwise Barzilai-Borwein line search technique (PADMM-EBB). We also establish iteration complexities of PADMM-EBB in terms of the KKT residual. Finally, we apply PADMM-EBB to handle the nonnegative dual graph regularized low-rank representation problem. Promising results on synthetic and real datasets corroborate the efficacy of PADMM-EBB.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا