No Arabic abstract
We report on a new approach, entirely based on electron-beam lithography technique, to contact electrically, in a four-probe scheme, single nanostructures obtained by self-assembly. In our procedure, nanostructures of interest are localised and contacted in the same fabrication step. This technique has been developed to study the field-induced reversal of an internal component of an asymmetric Bloch domain wall observed in elongated structures such as Fe(110) dots. We have focused on the control, using an external magnetic field, of the magnetisation orientation within Neel caps that terminate the domain wall at both interfaces. Preliminary magneto-transport measurements are discussed demonstrating that single Fe(110) dots have been contacted.
A new method to fabricate non-superconducting mesoscopic tunnel junctions by oxidation of Ti is presented. The fabrication process uses conventional electron beam lithography and shadow deposition through an organic resist mask. Superconductivity in Ti is suppressed by performing the deposition under a suitable background pressure. We demonstrate the method by making a single electron transistor which operated at $T < 0.4$ K and had a moderate charge noise of $2.5 times 10^{-3}$ e/$sqrt{mathrm{Hz}}$ at 10 Hz. Based on nonlinearities in the current-voltage characteristics at higher voltages, we deduce the oxide barrier height of approximately 110 mV.
A combined bottom-up assembly of electrodeposited nanowires and electron beam lithography technique has been developed to investigate the spin transfer torque and microwave emission on specially designed nanowires containing a single Co/Cu/Co pseudo spin valve. Microwave signals have been obtained even at zero magnetic field. Interestingly, high frequency vs. magnetic field tunability was demonstrated, in the range 0.4 - 2 MHz/Oe, depending on the orientation of the applied magnetic field relative to the magnetic layers of the pseudo spin valve. The frequency values and the emitted signal frequency as a function of the external magnetic field are in good quantitative agreement with the analytical vortex model as well as with micromagnetic simulations.
We present a lumped-element Josephson parametric amplifier (JPA) utilizing a straightforward fabrication process involving a single electron beam lithography step followed by double-angle evaporation of aluminum and in-situ oxidation. The Josephson junctions forming the SQUID are fabricated using bridgeless shadow evaporation technique, which enables reliable fabrication of relatively large ($sim9~mathrm{mu m^2}$) junctions. Our strongly coupled flux-pumped JPA achieves 20~dB gain with 95~MHz bandwidth around 5~GHz, while the center frequency is tunable by more than 1~GHz, with the additional possibility for rapid tuning by varying the pump frequency alone. Analytical calculations based on the input-output theory reproduce our measurement results closely.
We have combined direct nanofabrication by local anodic oxidation with conventional electron-beam lithography to produce a parallel double quantum dot based on a GaAs/AlGaAs heterostructure. The combination of both nanolithography methods allows to fabricate robust in-plane gates and Cr/Au top gate electrodes on the same device for optimal controllability. This is illustrated by the tunability of the interdot coupling in our device. We describe our fabrication and alignment scheme in detail and demonstrate the tunability in low-temperature transport measurements.
The precise positioning of dopant atoms within bulk crystal lattices could enable novel applications in areas including solid-state sensing and quantum computation. Established scanning probe techniques are capable tools for the manipulation of surface atoms, but at a disadvantage due to their need to bring a physical tip into contact with the sample. This has prompted interest in electron-beam techniques, followed by the first proof-of-principle experiment of bismuth dopant manipulation in crystalline silicon. Here, we use first principles modeling to discover a novel indirect exchange mechanism that allows electron impacts to non-destructively move dopants with atomic precision within the silicon lattice. However, this mechanism only works for the two heaviest group V donors with split-vacancy configurations, Bi and Sb. We verify our model by directly imaging these configurations for Bi, and by demonstrating that the promising nuclear spin qubit Sb can be manipulated using a focused electron beam.