Do you want to publish a course? Click here

Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates

112   0   0.0 ( 0 )
 Added by Malcolm Boshier
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is a pressing need for robust and straightforward methods to create potentials for trapping Bose-Einstein condensates which are simultaneously dynamic, fully arbitrary, and sufficiently stable to not heat the ultracold gas. We show here how to accomplish these goals, using a rapidly-moving laser beam that paints a time-averaged optical dipole potential in which we create BECs in a variety of geometries, including toroids, ring lattices, and square lattices. Matter wave interference patterns confirm that the trapped gas is a condensate. As a simple illustration of dynamics, we show that the technique can transform a toroidal condensate into a ring lattice and back into a toroid. The technique is general and should work with any sufficiently polarizable low-energy particles.



rate research

Read More

88 - M. White , H. Gao , M. Pasienski 2006
Bose-Einstein condensates of $^{87}$Rb atoms are transferred into radio-frequency (RF) induced adiabatic potentials and the properties of the corresponding dressed states are explored. We report on measurements of the spin composition of dressed condensates. We also show that adiabatic potentials can be used to trap atom gases in novel geometries, including suspending a cigar-shaped cloud above a curved sheet of atoms.
184 - C. Sias , A. Zenesini , H. Lignier 2007
We report on measurements of resonantly enhanced tunneling of Bose-Einstein condensates loaded into an optical lattice. By controlling the initial conditions of our system we were able to observe resonant tunneling in the ground and the first two excited states of the lattice wells. We also investigated the effect of the intrinsic nonlinearity of the condensate on the tunneling resonances.
Extending the understanding of Bose-Einstein condensate (BEC) physics to new geometries and topologies has a long and varied history in ultracold atomic physics. One such new geometry is that of a bubble, where a condensate would be confined to the surface of an ellipsoidal shell. Study of this geometry would give insight into new collective modes, self-interference effects, topology-dependent vortex behavior, dimensionality crossovers from thick to thin shells, and the properties of condensates pushed into the ultradilute limit. Here we discuss a proposal to implement a realistic experimental framework for generating shell-geometry BEC using radiofrequency dressing of magnetically-trapped samples. Such a tantalizing state of matter is inaccessible terrestrially due to the distorting effect of gravity on experimentally-feasible shell potentials. The debut of an orbital BEC machine (NASA Cold Atom Laboratory, aboard the International Space Station) has enabled the operation of quantum-gas experiments in a regime of perpetual freefall, and thus has permitted the planning of microgravity shell-geometry BEC experiments. We discuss specific experimental configurations, applicable inhomogeneities and other experimental challenges, and outline potential experiments.
The interplay between disorder and interactions is a leit-motiv of condensed matter physics, since it constitutes the driving mechanism of the metal-insulator transition. Bose-Einstein condensates in optical potentials are proving to be powerful tools to quantum simulate disordered systems. We will review the main experimental and theoretical results achieved in the last few years in this rapidly developing field.
A new type of matter wave diffraction management is presented that leads to sub-diffractive soliton-like structures. The proposed management technique uses two counter-moving, identical periodic potentials (e.g. optical lattices). For suitable lattice parameters a novel type of atomic band-gap structure appears in which the effective atomic mass becomes infinite at the lowest edge of an energy band. This way normal matter-wave diffraction (proportional to the square of the atomic momentum) is replaced by fourth-order diffraction, and hence the evolution of the system becomes sub-diffractive.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا