No Arabic abstract
Recently, clustering of inertial particles in turbulence has been thoroughly analyzed for statistically homogeneous isotropic flows. Phenomenologically, spatial homogeneity of particles configurations is broken by the advection of a range of eddies determined by the Stokes relaxation time of the particles which results in a multi-scale distribution of local concentrations and voids. Much less is known concerning anisotropic flows. Here, by addressing direct numerical simulations (DNS) of a statistically steady particle-laden homogeneous shear flow, we provide evidence that the mean shear preferentially orients particle patterns. By imprinting anisotropy on large scales velocity fluctuations, the shear indirectly affects the geometry of the clusters. Quantitative evaluation is provided by a purposely designed tool, the angular distribution function of particle pairs (ADF), which allows to address the anisotropy content of particles aggregates on a scale by scale basis. The data provide evidence that, depending on the Stokes relaxation time of the particles, anisotropic clustering may occur even in the range of scales where the carrier phase velocity field is already recovering isotropy. The strength of the singularity in the anisotropic component of the ADF quantifies the level of fine scale anisotropy, which may even reach values of more than 30% direction-dependent variation in the probability to find two close-by particles at viscous scale separation.
In this paper we discuss the dynamical features of intermittent fluctuations in homogeneous shear flow turbulence. In this flow the energy cascade is strongly modified by the production of turbulent kinetic energy related to the presence of vortical structures induced by the shear. By using direct numerical simulations, we show that the refined Kolmogorov similarity is broken and a new form of similarity is observed, in agreement to previous results obtained in turbulent boundary layers. As a consequence, the intermittency of velocity fluctuations increases with respect to homogeneous and isotropic turbulence. We find here that the statistical properties of the energy dissipation are practically unchanged with respect to homogeneous isotropic conditions, while the increased intermittency is entirely captured in terms of the new similarity law.
Motivated by recent experimental and numerical results, a simple unifying picture of intermittency in turbulent shear flows is suggested. Integral Structure Functions (ISF), taking into account explicitly the shear intensity, are introduced on phenomenological grounds. ISF can exhibit a universal scaling behavior, independent of the shear intensity. This picture is in satisfactory agreement with both experimental and numerical data. Possible extension to convective turbulence and implication on closure conditions for Large-Eddy Simulation of non-homogeneous flows are briefly discussed.
Direct numerical simulation is used to investigate effects of turbulent flow in the confined geometry of a face-centered cubic porous unit cell on the transport, clustering, and deposition of fine particles at different Stokes numbers ($St = 0.01, 0.1, 0.5, 1, 2$) and at a pore Reynolds number of 500. Particles are advanced using one-way coupling and collision of particles with pore walls is modeled as perfectly elastic with specular reflection. Tools for studying inertial particle dynamics and clustering developed for homogeneous flows are adapted to take into account the embedded, curved geometry of the pore walls. The pattern and dynamics of clustering are investigated using the volume change of Voronoi tesselation in time to analyze the divergence and convergence of the particles. Similar to the case of homogeneous, isotropic turbulence, the cluster formation is present at large volumes, while cluster destruction is prominent at small volumes and these effects are amplified with Stokes number. However, unlike homogeneous, isotropic turbulence, formation of large number of very small volumes was observed at all Stokes numbers and is attributed to the collision of particles with the pore wall. Multiscale wavelet analysis of the particle number density showed peak of clustering shifts towards larger scales with increase in Stokes number. Scale-dependent skewness and flatness quantify the intermittent void and cluster distribution, with cluster formation observed at small scales for all Stokes numbers, and void regions at large scales for large Stokes numbers.
In a shear flow particles migrate to their equilibrium positions in the microchannel. Here we demonstrate theoretically that if particles are inertial, this equilibrium can become unstable due to the Saffman lift force. We derive an expression for the critical Stokes number that determines the onset of instable equilibrium. We also present results of lattice Boltzmann simulations for spherical particles and prolate spheroids to validate the analysis. Our work provides a simple explanation of several unusual phenomena observed in earlier experiments and computer simulations, but never interpreted before in terms of the unstable equilibrium.
The existence of a quiescent core (QC) in the center of turbulent channel flows was demonstrated in recent experimental and numerical studies. The QC-region, which is characterized by relatively uniform velocity magnitude and weak turbulence levels, occupies about $40%$ of the cross-section at Reynolds numbers $Re_tau$ ranging from $1000$ to $4000$. The influence of the QC region and its boundaries on transport and accumulation of inertial particles has never been investigated before. Here, we first demonstrate that a QC is unidentifiable at $Re_tau = 180$, before an in-depth exploration of particle-laden turbulent channel flow at $Re_tau = 600$ is performed. The inertial spheres exhibited a tendency to accumulate preferentially in high-speed regions within the QC, i.e. contrary to the well-known concentration in low-speed streaks in the near-wall region. The particle wall-normal distribution, quantified by means of Voronoi volumes and particle number concentrations, varied abruptly across the QC-boundary and vortical flow structures appeared as void areas due to the centrifugal mechanism. The QC-boundary, characterized by a localized strong shear layer, appeared as a emph{barrier}, across which transport of inertial particles is hindered. Nevertheless, the statistics conditioned in QC-frame show that the mean velocity of particles outside of the QC was towards the core, whereas particles within the QC tended to migrate towards the wall. Such upward and downward particle motions are driven by similar motions of fluid parcels. The present results show that the QC exerts a substantial influence on transport and accumulation of inertial particles, which is of practical relevance in high-Reynolds number channel flow.