Do you want to publish a course? Click here

Hinodes SP and G-band co-alignment

86   0   0.0 ( 0 )
 Added by Rebecca Centeno
 Publication date 2009
  fields Physics
and research's language is English
 Authors R. Centeno




Ask ChatGPT about the research

We analyze the co-alignment between Hinodes BFI-Gband images and simultaneous SP maps with the aim of characterizing the general off-sets between them and the second order non-linear effects in SPs slit scanning mechanism. We provide calibration functions and parameters to correct for the nominal pixel scales and positioning.



rate research

Read More

The first Gaia data release unlocked the access to the photometric information of 1.1 billion sources in the $G$-band. Yet, given the high level of degeneracy between extinction and spectral energy distribution for large passbands such as the Gaia $G$-band, a correction for the interstellar reddening is needed in order to exploit Gaia data. The purpose of this manuscript is to provide the empirical estimation of the Gaia $G$-band extinction coefficient $k_G$ for both the red giants and main sequence stars, in order to be able to exploit the first data release DR1. We selected two samples of single stars: one for the red giants and one for the main sequence. Both samples are the result of a cross-match between Gaia DR1 and 2MASS catalogues; they consist of high quality photometry in the $G$-, $J$- and $Ks$-bands. These samples were complemented by temperature and metallicity information retrieved from, respectively, APOGEE DR13 and LAMOST DR2 surveys. We implemented a Markov Chain Monte Carlo method where we used $(G-Ks)_0$ vs $T_mathrm{eff}$ and $(J-Ks)_0$ vs $(G-Ks)_0$ calibration relations to estimate the extinction coefficient $k_G$ and we quantify its corresponding confidence interval via bootstrap resampling method. We tested our method on samples of red giants and main sequence stars, finding consistent solutions. We present here the determination of the Gaia extinction coefficient through a completely empirical method. Furthermore we provide the scientific community a formula for measuring the extinction coefficient as a function of stellar effective temperature, the intrinsic colour $(G-Ks)_0$ and absorption.
In this work, we focus in the magnetic evolution of a small region as seen by Hinode-SP during the time interval of about one hour. High-cadence LOS magnetograms and velocity maps were derived, allowing the study of different small-scale processes such as the formation/disappearance of bright points accompanying the evolution of an observed convective vortical motion.
We test how well available stellar population models can reproduce observed u,g,r,i,z-band photometry of the local galaxy population (0.02<=z<=0.03) as probed by the SDSS. Our study is conducted from the perspective of a user of the models, who has observational data in hand and seeks to convert them into physical quantities. Stellar population models for galaxies are created by synthesizing star formations histories and chemical enrichments using single stellar populations from several groups (Starburst99, GALAXEV, Maraston2005, GALEV). The role of dust is addressed through a simplistic, but observationally motivated, dust model that couples the amplitude of the extinction to the star formation history, metallicity and the viewing angle. Moreover, the influence of emission lines is considered (for the subset of models for which this component is included). The performance of the models is investigated by: 1) comparing their prediction with the observed galaxy population in the SDSS using the (u-g)-(r-i) and (g-r)-(i-z) color planes, 2) comparing predicted stellar mass and luminosity weighted ages and metallicities, specific star formation rates, mass to light ratios and total extinctions with literature values from studies based on spectroscopy. Strong differences between the various models are seen, with several models occupying regions in the color-color diagrams where no galaxies are observed. We would therefore like to emphasize the importance of the choice of model. Using our preferred model we find that the star formation history, metallicity and also dust content can be constrained over a large part of the parameter space through the use of u,g,r,i,z-band photometry. However, strong local degeneracies are present due to overlap of models with high and low extinction in certain parts of color space.
We investigate the formation of double-peaked asymmetric line profiles of CO in the fundamental band spectra emitted by young (1-5Myr) protoplanetary disks hosted by a 0.5-2 Solar mass star. Distortions of the line profiles can be caused by the gravitational perturbation of an embedded giant planet with q=4.7 10^-3 stellar-to-planet mass ratio. Locally isothermal, 2D hydrodynamic simulations show that the disk becomes globally eccentric inside the planetary orbit with stationary ~0.2-0.25 average eccentricity after ~2000 orbital periods. For orbital distances 1-10 AU, the disk eccentricity is peaked inside the region where the fundamental band of CO is thermal excitated. Hence, these lines become a sensitive indicators of the embedded planet via their asymmetries (both in flux and wavelength). We find that the line shape distortions (e.g. distance, central dip, asymmetry and positions of peaks) of a given transition depend on the excitation energy (i.e. on the rotational quantum number J). The magnitude of line asymmetry is increasing/decreasing with J if the planet orbits inside/outside the CO excitation zone (R_CO<=3, 5 and 7 AU for a 0.5,1 and 2 Solar mass star, respectively), thus one can constrain the orbital distance of a giant planet by determining the slope of peak asymmetry-J profile. We conclude that the presented spectroscopic phenomenon can be used to test the predictions of planet formation theories by pushing the age limits for detecting the youngest planetary systems.
G-band bright points (GBPs) are regarded as good manifestations of magnetic flux concentrations. We aim to investigate the relationship between the dynamic properties of GBPs and their longitudinal magnetic field strengths. High spatial and temporal resolution observations were recorded simultaneously with G-band filtergrams and Narrow-band Filter Imager (NFI) Stokes I and V images with Hinode /Solar Optical Telescope. The GBPs are identified and tracked in the G-band images automatically, and the corresponding longitudinal magnetic field strength of each GBP is extracted from the calibrated NFI magnetograms by a point-to-point method. After categorizing the GBPs into five groups by their longitudinal magnetic field strengths, we analyze the dynamics of GBPs of each group. The results suggest that with increasing longitudinal magnetic field strengths of GBPs correspond to a decrease in their horizontal velocities and motion ranges as well as by showing more complicated motion paths. This suggests that magnetic elements showing weaker magnetic field strengths prefer to move faster and farther along straighter paths, while stronger ones move more slowly in more erratic paths within a smaller region. The dynamic behaviors of GBPs with different longitudinal magnetic field strengths can be explained by that the stronger flux concentrations withstand the convective flows much better than weaker ones.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا