Do you want to publish a course? Click here

On the relationship between G-band bright point dynamics and their magnetic field strengths

74   0   0.0 ( 0 )
 Added by Yunfei Yang
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

G-band bright points (GBPs) are regarded as good manifestations of magnetic flux concentrations. We aim to investigate the relationship between the dynamic properties of GBPs and their longitudinal magnetic field strengths. High spatial and temporal resolution observations were recorded simultaneously with G-band filtergrams and Narrow-band Filter Imager (NFI) Stokes I and V images with Hinode /Solar Optical Telescope. The GBPs are identified and tracked in the G-band images automatically, and the corresponding longitudinal magnetic field strength of each GBP is extracted from the calibrated NFI magnetograms by a point-to-point method. After categorizing the GBPs into five groups by their longitudinal magnetic field strengths, we analyze the dynamics of GBPs of each group. The results suggest that with increasing longitudinal magnetic field strengths of GBPs correspond to a decrease in their horizontal velocities and motion ranges as well as by showing more complicated motion paths. This suggests that magnetic elements showing weaker magnetic field strengths prefer to move faster and farther along straighter paths, while stronger ones move more slowly in more erratic paths within a smaller region. The dynamic behaviors of GBPs with different longitudinal magnetic field strengths can be explained by that the stronger flux concentrations withstand the convective flows much better than weaker ones.



rate research

Read More

G-band bright points (GBPs) are thought to be the foot-points of magnetic flux tubes. The aim of this paper is to investigate the relation between the diffusion regimes of GBPs and the associated longitudinal magnetic field strengths. Two high resolution observations of different magnetized environments were acquired with the Hinode/Solar Optical Telescope. Each observation was recorded simultaneously with G-band filtergrams and Narrow-band Filter Imager (NFI) Stokes I and V images. GBPs are identified and tracked automatically, and then categorized into several groups by their longitudinal magnetic field strengths, which are extracted from the calibrated NFI magnetograms using a point-by-point method. The Lagrangian approach and the distribution of diffusion indices approach are adopted separately to explore the diffusion regime of GBPs for each group. It is found that the values of diffusion index and diffusion coefficient both decrease exponentially with the increasing longitudinal magnetic field strengths whichever approach is used. The empirical formulas deduced from the fitting equations are proposed to describe these relations. Stronger elements tend to diffuse more slowly than weak elements, independently of the magnetic flux of the surrounding medium. This may be because the magnetic energy of stronger elements is not negligible compared with the kinetic energy of the gas, and therefore the flows cannot perturb them so easily.Yang
Aims. We analyze observational data from 4 instruments to study the correlations between chromospheric emission, spanning the heights from the temperature minimum region to the middle chromosphere, and photospheric magnetic field. Methods: The data consist of radio images at 3.5 mm from the Berkeley-Illinois-Maryland Array (BIMA), UV images at 1600 A from TRACE, Ca II K-line filtergrams from BBSO, and MDI/SOHO longitudinal photospheric magnetograms. For the first time interferometric millimeter data with the highest currently available resolution are included in such an analysis. We determine various parameters of the intensity maps and correlate the intensities with each other and with the magnetic field. Results: The chromospheric diagnostics studied here show a pronounced similarity in their brightness structures and map out the underlying photospheric magnetic field relatively well. We find a power law to be a good representation of the relationship between photospheric magnetic field and emission from chromospheric diagnostics at all wavelengths. The dependence of chromospheric brightness on magnetic field is found to be different for network and internetwork regions.
Many previous studies have shown that magnetic fields as well as sunspot structures present rapid and irreversible changes associated with solar flares. In this paper we first use five X-class flares observed by SDO/HMI to show that not only the magnetic fields and sunspot structures do show rapid, irreversible changes but also these changes are closely related, both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96. Then using four active regions in quiescent times, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength, in addition to the well-known one between sunspot intensity and normal magnetic field strength. Connecting these two observational phenomena, we show that the sunspot structure change and the magnetic field change are the two facets of the same phenomena of solar flares, one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.
We have studied the relationship between the solar-wind speed $[V]$ and the coronal magnetic-field properties (a flux expansion factor [$f$] and photospheric magnetic-field strength [$B_{mathrm{S}}$]) at all latitudes using data of interplanetary scintillation and solar magnetic field obtained for 24 years from 1986 to 2009. Using a cross-correlation analyses, we verified that $V$ is inversely proportional to $f$ and found that $V$ tends to increase with $B_{mathrm{S}}$ if $f$ is the same. As a consequence, we find that $V$ has extremely good linear correlation with $B_{mathrm{S}}/f$. However, this linear relation of $V$ and $B_{mathrm{S}}/f$ cannot be used for predicting the solar-wind velocity without information on the solar-wind mass flux. We discuss why the inverse relation between $V$ and $f$ has been successfully used for solar-wind velocity prediction, even though it does not explicitly include the mass flux and magnetic-field strength, which are important physical parameters for solar-wind acceleration.
64 - K. Takahata , H. Hotta , Y. Iida 2021
We perform radiative magnetohydrodynamic calculations for the solar quiet region to investigate the dependence of statistical flow on magnetic properties and the three-dimensional (3D) structure of magnetic patches in the presence of large-scale flow that mimics differential rotation. It has been confirmed that strong magnetic field patches move faster in the longitudinal direction at the solar surface. Consequently, strong magnetic patches penetrate deeper into the solar interior. The motion of the deep-rooted magnetic patches is influenced by the faster differential rotation in the deeper layer. In this study, we perform realistic radiative magnetohydrodynamic calculations using R2D2 code to validate that stronger patches have deeper roots. We also add large-scale flow to mimic the differential rotation. The magnetic patches are automatically detected and tracked, and we evaluate the depth of 30,000 magnetic patches. The velocities of 2.9 million magnetic patches are then measured at the photosphere. We obtain the dependence of these values on the magnetic properties, such as field strength and flux. Our results confirm that strong magnetic patches tend to show deeper roots and faster movement, and we compare our results with observations using the point spread function of instruments at the Hinode and Solar Dynamics Observatory (SDO). Our result is quantitatively consistent with previous observational results of the SDO.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا