No Arabic abstract
During the last few decades, great effort has been made towards understanding hydrodynamical processes which determine the structure and evolution of stars. Up to now, the most stringent constraints have been provided by helioseismology and stellar cluster studies. However, the contribution of asteroseismology becomes more and more important, giving us an opportunity to probe the interiors and atmospheres of very different stellar objects. A variety of pulsating variables allows us to test various parameters of micro- and macrophysics by means of oscillation data. I will review the most outstanding key problems, both observational and theoretical, of which our knowledge can be improved by means of asteroseismology.
RR Lyrae stars play an important role as distance indicators and stellar population tracers. In this context the construction of accurate pulsation models is crucial to understand the observed properties and to constrain the intrinsic stellar parameters of these pulsators. The physical mechanism driving pulsation in RR Lyrae stars has been known since the middle of the 20th century and many efforts have been performed during the last few decades in the construction of more and more refined pulsation models. In particular, nonlinear pulsation models including a nonlocal time-dependent treatment of convection, such as the ones originally developed in Los Alamos in the seventies, allow us to reproduce all the relevant observables of radial pulsation and to establish accurate relations and methods to constrain the intrinsic stellar properties and the distance of these variables. The most recent results on RR Lyrae pulsation obtained through these kinds of models will be presented and a few still debated problems will be discussed.
We examine the role of opacities in stellar pulsation with reference to Cepheids and RR Lyraes, and examine the effect of augmented opacities on the theoretical pulsation light curves in key temperature ranges. The temperature ranges are provided by recent experimental and theoretical work that have suggested that the iron opacities have been considerably underestimated. For Cepheids, we find that the augmented opacities have noticeable effects in certain period ranges (around $log P approx 1$) even though there is a degeneracy with mixing length. We also find significant effects in theoretical models of B-star pulsators.
The period-luminosity sequences and the multiple periods of luminous red giant stars are examined using the OGLE III catalogue of long-period variables in the Large Magellanic Cloud. It is shown that the period ratios in individual multimode stars are systematically different from the ratios of the periods at a given luminosity of different period-luminosity sequences. This leads to the conclusion that the masses of stars at the same luminosity on the different period-luminosity sequences are different. An evolutionary scenario is used to show that the masses of stars on adjacent sequences differ by about 16-26% at a given luminosity, with the shorter period sequence being more massive. The mass is also shown to vary across each sequence by a similar percentage, with the mass increasing to shorter periods. On one sequence, sequence B, the mass distribution is shown to be bimodal. It is shown that the small amplitude variables on sequences A, A and B pulsate in radial and nonradial modes of angular degree l=0, 1 and 2, with the l=1 mode being the most common. The stars on sequences C and C are predominantly radial pulsators (l=0). Matching period ratios to pulsation models shows that the radial pulsation modes associated with sequences A, A, B, C and C are the 4th, 3rd, 2nd and 1st overtones and the fundamental mode, respectively.
The ANTARES code has been designed for simulation of astrophysical flows in a variety of situations, in particular in the context of stellar physics. Here, we describe extensions as necessary to model the interaction of pulsation and convection in classical pulsating stars. These extensions encomprise the introduction of a spherical grid, movable in the radial direction, specific forms of grid-refinement and considerations regarding radiative transfer. We then present the basic parameters of the cepheid we study more closely. For that star we provide a short discussion of patterns of the H+HeI and the HeII convection zones and the interaction with pulsation seen in the pdV work or atmospheric structures.
The lifetime of solar-like stars, the envelope structure of more massive stars, and stellar acoustic frequencies largely depend on the radiative properties of the stellar plasma. Up to now, these complex quantities have been estimated only theoretically. The development of the powerful tools of helio- and astero- seismology has made it possible to gain insights on the interiors of stars. Consequently, increased emphasis is now placed on knowledge of the monochromatic opacity coefficients. Here we review how these radiative properties play a role, and where they are most important. We then concentrate specifically on the envelopes of $beta$ Cephei variable stars. We discuss the dispersion of eight different theoretical estimates of the monochromatic opacity spectrum and the challenges we need to face to check these calculations experimentally.