Do you want to publish a course? Click here

Modelling stellar convection and pulsation in multidimensions using the ANTARES code

137   0   0.0 ( 0 )
 Added by Herbert Muthsam
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

The ANTARES code has been designed for simulation of astrophysical flows in a variety of situations, in particular in the context of stellar physics. Here, we describe extensions as necessary to model the interaction of pulsation and convection in classical pulsating stars. These extensions encomprise the introduction of a spherical grid, movable in the radial direction, specific forms of grid-refinement and considerations regarding radiative transfer. We then present the basic parameters of the cepheid we study more closely. For that star we provide a short discussion of patterns of the H+HeI and the HeII convection zones and the interaction with pulsation seen in the pdV work or atmospheric structures.



rate research

Read More

We have extended the ANTARES code to simulate the coupling of pulsation with convection in Cepheid-like variables in an increasingly realistic way, in particular in multidimensions, 2D at this stage. Present days models of radially pulsating stars assume radial symmetry and have the pulsation-convection interaction included via model equations containing ad hoc closures and moreover parameters whose values are barely known. We intend to construct ever more realistic multidimensional models of Cepheids. In the present paper, the first of a series, we describe the basic numerical approach and how it is motivated by physical properties of these objects which are sometimes more, sometimes less obvious. - For the construction of appropriate models a polar grid co-moving with the mean radial velocity has been introduced to optimize radial resolution throughout the different pulsation phases. The grid is radially stretched to account for the change of spatial scales due to vertical stratification and a new grid refinement scheme is introduced to resolve the upper, hydrogen ionisation zone where the gradient of temperature is steepest. We demonstrate that the simulations are not conservative when the original weighted essentially non-oscillatory method implemented in ANTARES is used and derive a new scheme which allows a conservative time evolution. The numerical approximation of diffusion follows the same principles. Moreover, the radiative transfer solver has been modified to improve the efficiency of calculations on parallel computers. We show that with these improvements the ANTARES code can be used for realistic simulations of the convection-pulsation interaction in Cepheids. We discuss the properties of several models which include the upper 42% of a Cepheid along its radial coordinate, assume different opening angles, and are suitable for an in-depth study of convection and pulsation.
We have implemented open boundary conditions into the ANTARES code to increase the realism of our simulations of stellar surface convection. Even though we greatly benefit from the high accuracy of our fifth order numerical scheme (WENO5), the broader stencils needed for the numerical scheme complicate the implementation of boundary conditions. We show that the effective temperature of a numerical simulation cannot be changed by corrections at the lower boundary since the thermal stratification does only change on the Kelvin-Helmholtz time scale. Except for very shallow models, this time scale cannot be covered by multidimensional simulations due to the enormous computational requirements. We demonstrate to what extent numerical simulations of stellar surface convection are sensitive to the initial conditions and the boundary conditions. An ill-conceived choice of parameters for the boundary conditions can have a severe impact. Numerical simulations of stellar surface convection will only be (physically) meaningful and realistic if the initial model, the extent and position of the simulation box, and the parameters from the boundary conditions are chosen adequately.
The impressive development of global numerical simulations of turbulent stellar interiors unveiled a variety of possible differential rotation (solar or anti-solar), meridional circulation (single or multi-cellular), and dynamo states (stable large scale toroidal field or periodically reversing magnetic fields). Various numerical schemes, based on the so-called anelastic set of equations, were used to obtain these results. It appears today mandatory to assess their robustness with respect to the details of the numerics, and in particular to the treatment of turbulent sub-grid scales. We report on an ongoing comparison between two global models, the ASH and EULAG codes. In EULAG the sub-grid scales are treated implicitly by the numerical scheme, while in ASH their effect is generally modelled by using enhanced dissipation coefficients. We characterize the sub-grid scales effect in a turbulent convection simulation with EULAG. We assess their effect at each resolved scale with a detailed energy budget. We derive equivalent eddy-diffusion coefficients and use the derived diffusivities in twin ASH numerical simulations. We find a good agreement between the large-scale flows developing in the two codes in the hydrodynamic regime, which encourages further investigation in the magnetohydrodynamic regime for various dynamo solutions.
63 - D. R. Xiong , L. Deng , C. Zhang 2018
Starting from hydrodynamic equations, we have established a set of hydrodynamic equations for average flow and a set of dynamic equations of auto- and cross-correlations of turbulent velocity and temperature fluctuations, following the classic Reynolds treatment of turbulence. The combination of the two sets of equations leads to a complete and self-consistent mathematical expressions ready for the calculations of stellar structure and oscillations. In this paper, non-locality and anisotropy of turbulent convection are concisely presented, together with defining and calibrating of the three convection parameters ($c_1$, $c_2$ and $c_3$) included in the algorithm. With the non-local theory of convection, the structure of the convective envelope and the major characteristics of non-adiabatic linear oscillations are demonstrated by numerical solutions. Great effort has been exercised to the choice of convection parameters and pulsation instabilities of the models, the results of which show that within large ranges of all three parameters ($c_1$, $c_2$ and $c_3$) the main properties of pulsation stability keep unchanged.
We examine the role of opacities in stellar pulsation with reference to Cepheids and RR Lyraes, and examine the effect of augmented opacities on the theoretical pulsation light curves in key temperature ranges. The temperature ranges are provided by recent experimental and theoretical work that have suggested that the iron opacities have been considerably underestimated. For Cepheids, we find that the augmented opacities have noticeable effects in certain period ranges (around $log P approx 1$) even though there is a degeneracy with mixing length. We also find significant effects in theoretical models of B-star pulsators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا