Do you want to publish a course? Click here

Concurrent Magnetic and Metal-Insulator Transitions in (Eu,Sm)B_6 Single Crystals

135   0   0.0 ( 0 )
 Added by Hsiu-Hau Lin
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The effects of magnetic doping on a EuB_6 single crystal were investigated based on magnetic and transport measurements. A modest 5% Sm substitution for Eu changes the magnetic and transport properties dramatically and gives rise to concurrent antiferromagnetic and metal-insulator transitions (MIT) from ferromagnetic MIT for EuB6. Magnetic doping simultaneously changes the itinerant carrier density and the magnetic interactions. We discuss the origin of the concurrent magnetic MIT in (Eu,Sm)B_6.



rate research

Read More

We study effects of classical magnetic impurities on the Anderson metal-insulator transition numerically. We find that a small concentration of Heisenberg impurities enhances the critical disorder amplitude $W_{rm c}$ with increasing exchange coupling strength $J$. The resulting scaling with $J$ is analyzed which supports an anomalous scaling prediction by Wegner due to the combined breaking of time-reversal and spin-rotational symmetry. Moreover, we find that the presence of magnetic impurities lowers the critical correlation length exponent $ u$ and enhances the multifractality parameter $alpha_0$. The new value of $ u$ improves the agreement with the value measured in experiments on the metal-insulator transition (MIT) in doped semiconductors like phosphor-doped silicon, where a finite density of magnetic moments is known to exist in the vicinity of the MIT. The results are obtained by a finite-size scaling analysis of the geometric mean of the local density of states which is calculated by means of the kernel polynomial method. We establish this combination of numerical techniques as a method to obtain critical properties of disordered systems quantitatively.
The effects of Ni doping in Eu(Co{1-x}Ni{x})2As2 single crystals with x =0 to 1 grown out of self flux are investigated via crystallographic, electronic transport, magnetic, and thermal measurements. All compositions adopt the body-centered-tetragonal ThCr2Si2 structure with space group I4/mmm. We also find 3-4% of randomly-distributed vacancies on the Co/Ni site. Anisotropic magnetic susceptibility chi(T) data versus temperature T show clear signatures of an antiferromagnetic (AFM) c-axis helix structure associated with the Eu{+2} spins-7/2 for x = 0 and x = 1 as previously reported. The chi(T) data for x = 0.03 and 0.10 suggest an anomalous 2q magnetic structure containing two helix axes along the c axis and in the ab plane, respectively, whereas for x = 0.75 and 0.82, a c-axis helix is inferred as previously found for x = 0 and 1. At intermediate compositions x = 0.2, 0.32, 0.42, 0.54, and 0.65 a magnetic structure with a large ferromagnetic (FM) c-axis component is found from magnetization versus field isotherms, suggested to be an incommensurate FM cone structure associated with the Eu spins, which consists of both AFM and FM components. In addition, the chi(T) and heat capacity data for x = 0.2--0.65 indicate the occurrence of itinerant FM order associated with the Co/Ni atoms with Curie temperatures from 60 K to 25 K, respectively. Electrical resistivity measurements indicate metallic character for all compositions with abrupt increases in slope on cooling below the Eu AFM transition temperatures. In addition to this panoply of magnetic transitions, {151}Eu Mossbauer measurements indicate that ordering of the Eu moments proceeds via an incommensurate sine amplitude-modulated structure with additional transition temperatures associated with this effect.
In the supplemental materials we justify our choice of the number of Chebychev moments used within the kernel polynomial method, show some preliminary results for the large coupling behavior, discuss possible correlation effects in the local density of states, estimate the spin relaxation length and introduce the goodness of fit probability that is used to assess the quality of the fits.
319 - R. Mondaini , T. Paiva , 2014
We use quantum Monte Carlo to determine the magnetic and transport properties of coupled square lattice spin and fermionic planes as a model for a metal-insulator interface. Specifically, layers of Ising spins with an intra-layer exchange constant $J$ interact with the electronic spins of several adjoining metallic sheets via a coupling $J_H$. When the chemical potential cuts across the band center, that is, at half-filling, the Neel temperature of antiferromagnetic ($J>0$) Ising spins is enhanced by the coupling to the metal, while in the ferromagnetic case ($J<0$) the metallic degrees of freedom reduce the ordering temperature. In the former case, a gap opens in the fermionic spectrum, driving insulating behavior, and the electron spins also order. This induced antiferromagnetism penetrates more weakly as the distance from the interface increases, and also exhibits a non-monotonic dependence on $J_H$. For doped lattices an interesting charge disproportionation occurs where electrons move to the interface layer to maintain half-filling there.
High-quality KFe2As2 (K122) single crystals synthesized by different techniques have been studied by magnetization and specific heat (SH) measurements. There are 2 types of samples both affected by disordered magnetic phases: (i) cluster-glass (CG) like or (ii) Griffiths phase (G) like. For (i) at low applied magnetic fields the T-dependence of the zero field cooled (ZFC) linear susceptibility (chi_l) exhibits an anomaly with an irreversible behavior in ZFC and field cooled (FC) data. This anomaly is related to the freezing temperature T_f. The extrapolated T_f to B=0 varies between 50 K and 90 K. Below T_f we observed a magnetic hysteresis in the field dependence of the isothermal magnetization (M(B)). The frequency shift of the freezing temperature delta T_f=Delta T_f/[T_fDelta(ln u)]sim 0.05$ has an intermediate value, which provides evidence for the formation of a CG-like state in the K122 samples of type (i). The frequency dependence of their T_f follows a conventional power-law divergence of critical slowing down: tau=tau_0 [T_f(nu)/T_f(0)-1]^{-z u^{}} with the critical exponent z u^{}=10(2) and a relatively long characteristic time constant tau_0 =6.9 x10^{-11}$s also supporting a CG behavior. The large value of the Sommerfeld coefficient was related to magnetic contribution from a CG. Samples from (ii) did not show a hysteresis behavior for chi_l(T) and M(B). Below a crossover temperature T^* sim 40 K a power-law dependence in the chi_l propto T^[lambda_G-1}], with a non-universal lambda_G was observed, suggesting a quantum G-like behavior. In this case chi_l and M(B) can be scaled using the scaling function M_s(T,B)= B^{1-lambda_{tiny G}}Y(mu B/k_BT) with the scaling moment mu of the order of 3.5mu_b. The same non-universal exponent was found also in SH measurements, where the magnetic contribution C/T propto T^(lambda_G-1).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا