Do you want to publish a course? Click here

The Physical Properties of Four ~600K T Dwarfs

247   0   0.0 ( 0 )
 Added by Sandy Leggett
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present Spitzer 7.6-14.5um spectra of ULAS J003402.77-005206.7 and ULAS J133553.45+113005.2, two T9 dwarfs with the latest spectral types currently known. We fit synthetic spectra and photometry to the near- through mid-infrared energy distributions of these dwarfs and that of the T8 dwarf 2MASS J09393548-2448279. We also analyse near-infrared data for another T9, CFBD J005910.82-011401.3. We find that the ratio of the mid- to near-infrared fluxes is very sensitive to effective temperature at these low temperatures, and that the 2.2 and 4.5um fluxes are sensitive to metallicity and gravity; there is a degeneracy between these parameters. The 4.5 and 10um fluxes are also sensitive to vertical transport of gas through the atmosphere, which we find to be significant for these dwarfs. The full near- through mid-infrared spectral energy distribution allows us to constrain the effective temperature (K)/gravity (m/s2)/metallicity ([m/H] dex) of ULAS J0034-00 and ULAS J1335+11 to 550-600/ 100-300/ 0.0-0.3 and 500-550/ 100-300/ 0.0-0.3, respectively. These fits imply low masses and young ages for the dwarfs of 5-20 M(Jup) and 0.1-2 Gyr. The fits to 2MASS J0939-24 are in good agreement with the measured distance, the observational data, and the earlier T8 near-infrared spectral type if it is a slightly metal-poor 4-10 Gyr old system consisting of a 500 and 700K, ~25 and ~40 M(Jup), pair, although it is also possible that it is an identical pair of 600K, 30 M(Jup), dwarfs. As no mid-infrared data are available for CFBD J0059-01 its properties are less well constrained; nevertheless it appears to be a 550-600K dwarf with g= 300-2000 m/s2 and [m/H]= 0-0.3 dex. These properties correspond to mass and age ranges of 10-50 M(Jup) and 0.5-10 Gyr for this dwarf.



rate research

Read More

Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late T-dwarf (600-800K) near infrared spectra. With these spectra we are able to place direct constraints the molecular abundances of H$_2$O, CH$_4$, CO, CO$_2$, NH$_3$, H$_2$S, and Na+K, gravity, thermal structure (and effective temperature), photometric radius, and cloud optical depths. We find that ammonia, water, methane, and the alkali metals are present and well constrained in all 11 objects. From the abundance constraints we find no significant trend in the water, methane, or ammonia abundances with temperature, but find a very strong ($>$25$sigma$) increasing trend in the alkali metal abundances with effective temperature, indicative of alkali rainout. We also find little evidence for optically thick clouds. With the methane and water abundances, we derive the intrinsic atmospheric metallicity and carbon-to-oxygen ratios. We find in our sample, that metallicities are typically sub solar and carbon-to-oxygen ratios are somewhat super solar, different than expectations from the local stellar population. We also find that the retrieved vertical thermal profiles are consistent with radiative equilibrium over the photospheric regions. Finally, we find that our retrieved effective temperatures are lower than previous inferences for some objects and that our radii are larger than expectations from evolutionary models, possibly indicative of un-resolved binaries. This investigation and methodology represents a paradigm in linking spectra to the determination of the fundamental chemical and physical processes governing cool brown dwarf atmospheres.
We present a large forward-modeling analysis for 55 late-T (T7-T9) dwarfs, using low-resolution ($Rapprox150$) near-infrared spectra and cloudless Sonora-Bobcat model atmospheres. We derive the objects effective temperatures, surface gravities, metallicities, radii, masses, and luminosities using our newly developed Bayesian framework, and use the resulting population properties to test the model atmospheres. We find (1) our objects fitted metallicities are 0.3-0.4 dex lower than those of nearby stars; (2) their ages derived from spectroscopic parameters are implausibly young; (3) their fitted temperatures show a similar spread as empirical temperature scales at a given spectral type but are $sim100$ K hotter for $geqslant$T8 dwarfs; and (4) their spectroscopically inferred masses are unphysically small. These results suggest the Sonora-Bobcat assumptions of cloudless and chemical-equilibrium atmospheres do not adequately reproduce late-T dwarf spectra. We also find a gravity- and a metallicity-dependence of temperatures. Combining the resulting parameter posteriors of our sample, we quantify the degeneracy between surface gravity and metallicity such that an increase in $Z$ combined with a $3.4times$ increase in $log{g}$ results in a spectrum that has similar fitted parameters. We note the systematic difference between our 1.0-2.5 $mu$m spectra and the Sonora-Bobcat models is $approx$2-4% of the objects peak $J$-band fluxes, implying modeling systematics will exceed measurement uncertainties when analyzing data with $J$-band S/N $gtrsim50$. Using our large sample, we examine the fitting residuals as a function of wavelength and atmospheric properties to discern how to improve the models. Our work constitutes the largest analysis of brown dwarf spectra using multi-metallicity models and the most systematic examination of ultracool model atmospheres to date.
Half of the energy emitted by late-T- and Y-type brown dwarfs emerges at 3.5 < lambda um < 5.5. We present new L (3.43 < lambda um < 4.11) photometry obtained at the Gemini North telescope for nine late-T and Y dwarfs, and synthesize L from spectra for an additional two dwarfs. The targets include two binary systems which were imaged at a resolution of 0.25. One of these, WISEP J045853.90+643452.6AB, shows significant motion, and we present an astrometric analysis of the binary using Hubble Space Telescope, Keck Adaptive Optics, and Gemini images. We compare lambda ~4um observations to models, and find that the model fluxes are too low for brown dwarfs cooler than ~700K. The discrepancy increases with decreasing temperature, and is a factor of ~2 at T_eff=500K and ~4 at T_eff=400K. Warming the upper layers of a model atmosphere generates a spectrum closer to what is observed. The thermal structure of cool brown dwarf atmospheres above the radiative-convective boundary may not be adequately modelled using pure radiative equilibrium; instead heat may be introduced by thermochemical instabilities (previously suggested for the L- to T-type transition) or by breaking gravity waves (previously suggested for the solar system giant planets). One-dimensional models may not capture these atmospheres, which likely have both horizontal and vertical pressure/temperature variations.
We present parallaxes of 11 mid-to-late T dwarfs observed in the UKIRT Infrared Deep Sky Survey. We use these results to test the reliability of model predictions in magnitude-color space, determine a magnitude-spectral type calibration, and, estimate a bolometric luminosity and effective temperature range for the targets. We used observations from the UKIRT WFCAM instrument pipeline processed at the Cambridge Astronomical Survey Unit. The parallaxes and proper motions of the sample were calculated using standard procedures. The bolometric luminosity was estimated using near- and mid-infrared observations with two different methods. The corresponding effective temperature ranges were found adopting a large age-radius range. We show the models are unable to predict the colors of the latest T dwarfs indicating the incompleteness of model opacities for NH3, CH4 and H2 as the temperature declines. We report the effective temperature ranges obtained.
We present trigonometric parallax and proper motion measurements for two T-type brown dwarfs. We derive our measurements from infrared laser guide star adaptive optics observations spanning five years from the ShaneAO/SHARCS and NIRC2/medium-cam instruments on the Shane and Keck telescopes, respectively. To improve our astrometric precision, we measure and apply a distortion correction to our fields for both instruments. We also transform the Keck and ShaneAO astrometric reference frames onto the ICRS using five-parameter parallax and proper motion solutions for background reference stars from Gaia DR2. Fitting for parallax and proper motion, we measure parallaxes of $73.5pm9.2$ mas and $70.1pm6.7$ mas for WISEJ19010703+47181688 (WISE1901) and WISEJ21543294+59421370 (WISE2154), respectively. We utilize Monte Carlo methods to estimate the error in our sparse field methods, taking into account overfitting and differential atmospheric refraction. Comparing to previous measurements in the literature, all of our parallax and proper motion values fall within $2sigma$ of the published measurements, and 4 of 6 measurements are within $1sigma$. These data are among the first parallax measurements of these T dwarfs and serve as precise measurements for calibrating stellar formation models. These two objects are the first results of an ongoing survey of T dwarfs with Keck/NIRC2 and the Shane Adaptive Optics system at Lick Observatory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا