Do you want to publish a course? Click here

An Interference Removal Technique for Radio Pulsar Searches

103   0   0.0 ( 0 )
 Added by Ralph Eatough
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

Searches for radio pulsars are becoming increasingly difficult because of a rise in impulsive man-made terrestrial radio-frequency interference. Here we present a new technique, zero-DM filtering, which can significantly reduce the effects of such signals in pulsar search data. The technique has already been applied to a small portion of the data from the Parkes multi-beam pulsar survey, resulting in the discovery of four new pulsars, so illustrating its efficacy.



rate research

Read More

The computational cost of searching for new pulsars is a limiting factor for upcoming radio telescopes such as SKA. We introduce four new algorithms: an optimal constant-period search, a coherent tree search which permits optimal searching with O(1) cost per model, a semicoherent search which combines information from coherent subsearches while preserving as much phase information as possible, and a hierarchical search which interpolates between the coherent and semicoherent limits. Taken together, these algorithms improve the computational cost of pulsar search by several orders of magnitude. In this paper, we consider the simple case of a constant-acceleration phase model, but our methods should generalize to more complex search spaces.
We introduce a new pipeline for analyzing and mitigating radio frequency interference (RFI), which we call Sky-Subtracted Incoherent Noise Spectra (SSINS). SSINS is designed to identify and remove faint RFI below the single baseline thermal noise by employing a frequency-matched detection algorithm on baseline-averaged amplitudes of time-differenced visibilities. We demonstrate the capabilities of SSINS using the Murchison Widefield Array (MWA) in Western Australia. We successfully image aircraft flying over the array via digital television (DTV) reflection detected using SSINS and summarize an RFI occupancy survey of MWA Epoch of Reionization data. We describe how to use SSINS with new data using a documented, publicly available implementation with comprehensive usage tutorials.
The vast majority of known non-accreting neutron stars (NSs) are rotation-powered radio and/or gamma-ray pulsars. So far, their multiwavelength spectra have all been described satisfactorily by thermal and non-thermal continuum models, with no spectral lines. Spectral features have, however, been found in a handful of exotic NSs and thought to be a manifestation of their unique traits. Here we report the detection of absorption features in the X-ray spectrum of an ordinary rotation-powered radio pulsar, J1740+1000. Our findings bridge the gap between the spectra of pulsars and other, more exotic, NSs, suggesting that the features are more common in the NS spectra than they have been thought so far.
104 - Matteo Bachetti 2020
Most periodicity search algorithms used in pulsar astronomy today are highly efficient and take advantage of multiple CPUs or GPUs. The bottlenecks are usually represented by the operations that require an informed choice from an expert eye. A typical case is the presence of radio-frequency interferences in the data, that often mimic the periodic signals of pulsars, and require visual inspection of hundreds or thousands of pulsar candidates satisfying a number of preselected criteria. CICLOPS is a citizen science project designed to transform the search for pulsars into an entertaining 3D video game. We build a distributed computing platform, running calculations with the users CPUs and GPUs and using the unique human abilities in pattern recognition to find the best candidate pulsations.
When galaxies merge, the supermassive black holes in their centers may form binaries and, during the process of merger, emit low-frequency gravitational radiation in the process. In this paper we consider the galaxy 3C66B, which was used as the target of the first multi-messenger search for gravitational waves. Due to the observed periodicities present in the photometric and astrometric data of the source of the source, it has been theorized to contain a supermassive black hole binary. Its apparent 1.05-year orbital period would place the gravitational wave emission directly in the pulsar timing band. Since the first pulsar timing array study of 3C66B, revised models of the source have been published, and timing array sensitivities and techniques have improved dramatically. With these advances, we further constrain the chirp mass of the potential supermassive black hole binary in 3C66B to less than $(1.65pm0.02) times 10^9~{M_odot}$ using data from the NANOGrav 11-year data set. This upper limit provides a factor of 1.6 improvement over previous limits, and a factor of 4.3 over the first search done. Nevertheless, the most recent orbital model for the source is still consistent with our limit from pulsar timing array data. In addition, we are able to quantify the improvement made by the inclusion of source properties gleaned from electromagnetic data to `blind pulsar timing array searches. With these methods, it is apparent that it is not necessary to obtain exact a priori knowledge of the period of a binary to gain meaningful astrophysical inferences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا