Do you want to publish a course? Click here

The distance to a star forming region in the Outer arm of the Galaxy

250   0   0.0 ( 0 )
 Added by Kazuya Hachisuka
 Publication date 2009
  fields Physics
and research's language is English
 Authors K. Hachisuka




Ask ChatGPT about the research

We performed astrometric observations with the VLBA of WB89-437, an H2O maser source in the Outer spiral arm of the Galaxy. We measure an annual parallax of 0.167 +/- 0.006 mas, corresponding to a heliocentric distance of 6.0 +/- 0.2 kpc or a Galactocentric distance of 13.4 +/- 0.2 kpc. This value for the heliocentric distance is considerably smaller than the kinematic distance of 8.6 kpc. This confirms the presence of a faint Outer arm toward l = 135 degrees. We also measured the full space motion of the object and find a large peculiar motion of ~20 km/s toward the Galactic center. This peculiar motion explains the large error in the kinematic distance estimate. We also find that WB89-437 has the same rotation speed as the LSR, providing more evidence for a flat rotation curve and thus the presence of dark matter in the outer Galaxy.



rate research

Read More

We report parallaxes and proper motions of three water maser sources in high-mass star-forming regions in the Outer Spiral Arm of the Milky Way. The observations were conducted with the Very Long Baseline Array as part of Bar and Spiral Structure Legacy Survey and double the number of such measurements in the literature. The Outer Arm has a pitch angle of 14.9 +/- 2.7 deg and a Galactocentric distance of 14.1 +/- 0.6 kpc toward the Galactic anticenter. The average motion of these sources toward the Galactic center is 10.7 +/- 2.1 km/s and we see no sign of a significant fall in the rotation curve out to 15 kpc from the Galactic center. The three-dimensional locations of these star-forming regions are consistent with a Galactic warp of several hundred parsecs from the plane.
The outer Galaxy beyond the Outer Arm provides a good opportunity to study star formation in an environment significantly different from that in the solar neighborhood. However, star-forming regions in the outer Galaxy have never been comprehensively studied or cataloged because of the difficulties in detecting them at such large distances. We studied 33 known young star-forming regions associated with 13 molecular clouds at $R_{rm G}$ $ge$ 13.5 kpc in the outer Galaxy with data from the Wide-field Infrared Survey Explorer (WISE) mid-infrared all-sky survey. From their color distribution, we developed a simple identification criterion of star-forming regions in the outer Galaxy with the WISE color. We applied the criterion to all the WISE sources in the molecular clouds in the outer Galaxy at $R_{rm G}$ $ge$ 13.5 kpc detected with the Five College Radio Astronomy Observatory (FCRAO) $^{12}$CO survey of the outer Galaxy, of which the survey region is 102$^circ$.49 $le$ $l$ $le$ 141$^circ$.54, $-$3$^circ$.03 $le$ $b$ $le$ 5$^circ$.41, and successfully identified 711 new candidate star-forming regions in 240 molecular clouds. The large number of samples enables us to perform the statistical study of star-formation properties in the outer Galaxy for the first time. This study is crucial to investigate the fundamental star-formation properties, including star-formation rate, star-formation efficiency, and initial mass function, in a primordial environment such as the early phase of the Galaxy formation.
It is still debated whether star formation process depends on environment. In particular it is yet unclear whether star formation in the outer Galaxy, where the environmental conditions are, theoretically, less conducive, occurs in the same way as in the inner Galaxy. We investigate the population of NGC1893, a young cluster ~3-4 Myr in the outer part of the Galaxy (galactic radius >11 Kpc), to explore the effects of environmental conditions on star forming regions. We present infrared observations acquired using the IRAC camera onboard the Spitzer Space Telescope and analyze the color-color diagrams to establish the membership of stars with excesses. We also merge this information with that obtained from Chandra ACIS-I observations, to identify the Class III population. We find that the cluster is very rich, with 242 PMS Classical T-Tauri stars and 7 Class 0/I stars. We identify 110 Class III candidate cluster members in the ACIS-I field of view. We estimate a disk fraction for NGC1893 of about 67%, similar to fractions calculated for nearby star forming regions of the same age. Although environmental conditions are unfavorable, star formation can clearly be very successful in the outer Galaxy, allowing creation of a very rich cluster like NGC1893.
Star-formation in the outer Galaxy is thought to be different from the inner Galaxy, as it is subject to different environmental parameters such as metallicity, interstellar radiation field, or mass surface density that all change with Galactocentric radius. We therefore aimed at getting a more detailed view on the structure of the outer Galaxy, determining physical properties for a large number of star forming clumps and understanding star-formation outside the Solar circle. We use pointed $^{12}$CO(2-1) observations conducted with the APEX telescope to determine the velocity components towards 830 dust clumps identified from 250 $mu$m Herschel/Hi-GAL SPIRE emission maps in the outer Galaxy between $225deg<ell<260deg$. We determined kinematic distances from the velocity components, in order to analyze the structure of the outer Galaxy and to estimate physical properties such as dust temperatures, bolometric luminosities, clump masses, and H2 column densities for 611 clumps. We find the CO clouds to be strongly correlated with the highest column density parts of the Hi emission distribution, spanning a web of bridges, spurs and blobs of star forming regions between the larger complexes, unveiling the complex three-dimensional structure of the outer Galaxy in unprecedented detail. Using the physical properties of the clumps, we find an upper limit of 6% (40 sources) to be able to form high-mass stars. This is supported by the fact that only 2 methanol Class II masers or 34 known or candidate Hii regions are found in the whole survey area, indicating an even lower fraction to be able to form high-mass stars in the outer Galaxy. We fail to find any correlation of the physical parameters of the identified (potential) star forming regions with the expanding supershell, indicating that although the shell organizes the interstellar material into clumps, their properties are unaffected.
The Outer Scutum-Centaurus arm (OSC) is the most distant molecular spiral arm known in the Milky Way. The OSC may be the very distant end of the well-known Scutum-Centaurus arm, which stretches from the end of the Galactic bar to the outer Galaxy. At this distance the OSC is seen in the first Galactic quadrant. The population of star formation tracers in the OSC remains largely uncharacterized. Extragalactic studies show a strong correlation between molecular gas and star formation, and carbon monoxide (CO) emission was recently discovered in the OSC. Here we use the Arizona Radio Observatory (ARO) 12-m telescope to observe the $^{12}$CO J = 1-0 and $^{13}$CO J = 1-0 transitions toward 78 HII region candidates chosen from the WISE Catalog of Galactic HII Regions. These targets are spatially coincident with the Galactic longitude-latitude ($ell, b$) OSC locus as defined by HI emission. We detect CO emission in $sim 80$% of our targets. In total, we detect 117 $^{12}$CO and 40 $^{13}$CO emission lines. About 2/3 of our targets have at least one emission line originating beyond the Solar orbit. Most of the detections beyond the Solar orbit are associated with the Outer Arm, but there are 17 $^{12}$CO emission lines and 8 $^{13}$CO emission lines with LSR velocities that are consistent with the velocities of the OSC. There is no apparent difference between the physical properties (e.g., molecular column density) of these OSC molecular clouds and non--OSC molecular clouds within our sample.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا