No Arabic abstract
We report results for $K/pi$ fluctuations from Au+Au collisions at $sqrt{s_{NN}}$ = 19.6, 62.4, 130, and 200 GeV using the STAR detector at the Relativistic Heavy Ion Collider. Our results for $K/pi$ fluctuations in central collisions show little dependence on the incident energies studied and are on the same order as results observed by NA49 at the Super Proton Synchrotron in central Pb+Pb collisions at $sqrt{s_{NN}}$ = 12.3 and 17.3 GeV. We also report results for the collision centrality dependence of $K/pi$ fluctuations as well as results for $K^{+}/pi^{+}$, $K^{-}/pi^{-}$, $K^{+}/pi^{-}$, and $K^{-}/pi^{+}$ fluctuations. We observe that the $K/pi$ fluctuations scale with the multiplicity density, $dN/deta$, rather than the number of participating nucleons.
Differential cross sections for pi- p and pi+ p elastic scattering were measured at five energies between 19.9 and 43.3 MeV. The use of the CHAOS magnetic spectrometer at TRIUMF, supplemented by a range telescope for muon background suppression, provided simultaneous coverage of a large part of the full angular range, thus allowing very precise relative cross section measurements. The absolute normalisation was determined with a typical accuracy of 5 %. This was verified in a simultaneous measurement of muon proton elastic scattering. The measured cross sections show some deviations from phase shift analysis predictions, in particular at large angles and low energies. From the new data we determine the real part of the isospin forward scattering amplitude.
Dynamical fluctuations in global conserved quantities such as baryon number, strangeness, or charge may be enhanced near a QCD critical point. Charge dependent results from new measurements of dynamical $K/pi$, $p/pi$, and $K/p$ ratio fluctuations are presented. The STAR experiment has performed a comprehensive study of the energy dependence of these dynamical fluctuations in Au+Au collisions at the energies $sqrt{s_{NN}}$ = 7.7-200 GeV using the observable, $ u_{rm dyn}$. These results are compared to previous measurements and to theoretical predictions. Various proposed scaling scenarios that attempt to remove the intrinsic volume dependence of $ u_{rm dyn}$ and to simplify comparisons between experimental measurements are also considered. Constructing an intensive quantity allows for a direct connection to thermodynamic predictions.
Multi-fragment decays of 129Xe, 197Au, and 238U projectiles in collisions with Be, C, Al, Cu, In, Au, and U targets at energies between E/A = 400 MeV and 1000 MeV have been studied with the ALADIN forward-spectrometer at SIS. By adding an array of 84 Si-CsI(Tl) telescopes the solid-angle coverage of the setup was extended to theta_lab = 16 degree. This permitted the complete detection of fragments from the projectile-spectator source. The dominant feature of the systematic set of data is the Z_bound universality that is obeyed by the fragment multiplicities and correlations. These observables are invariant with respect to the entrance channel if plotted as a function of Z_bound, where Z_bound is the sum of the atomic numbers Z_i of all projectile fragments with Z_i geq 2. No significant dependence on the bombarding energy nor on the target mass is observed. The dependence of the fragment multiplicity on the projectile mass follows a linear scaling law. The reasons for and the limits of the observed universality of spectator fragmentation are explored within the realm of the available data and with model studies. It is found that the universal properties should persist up to much higher bombarding energies than explored in this work and that they are consistent with universal features exhibited by the intranuclear cascade and statistical multifragmentation models. PACS numbers: 25.70.Mn, 25.70.Pq, 25.75.-q
The production and the propagation of K+ and of K- mesons in heavy-ion collisions at beam energies of 1 to 2 AGeV have systematically been investigated with the Kaon Spectrometer KaoS at the SIS at the GSI. The ratio of the K+ production excitation function for Au+Au and for C+C reactions increases with decreasing beam energy, which is expected for a soft nuclear equation-of-state. At 1.5 AGeV a comprehensive study of the K+ and of the K- emission as a function of the size of the collision system, of the collision centrality, of the kaon energy, and of the polar emission angle has been performed. The K-/K+ ratio is found to be nearly constant as a function of the collision centrality. The spectral slopes and the polar emission patterns are different for K- and for K+. These observations indicate that K+ mesons decouple earlier from the reaction zone than K- mesons.
The reactions $gamma p rightarrow K^{+}Sigma^{pm}pi^{mp}$ were studied with the SAPHIR detector using a tagged photon beam at the electron stretcher facility ELSA in Bonn. The decays $Sigma^{-} rightarrow npi^{-}$ and $Sigma^{+} rightarrow npi^{+}, ppi^0$ were fully reconstructed. Reaction cross sections were measured as a function of the photon energy from threshold up to $2.6,$GeV with considerably improved statistics compared to a previous bubble chamber measurement. The cross sections rise monotonously with increasing photon energy. The two-particle mass distributions of $Sigma^{pm}pi^{mp}$ and $K^+pi^-$ show substantial production of resonant states.