Do you want to publish a course? Click here

The flat oxygen abundance gradient in the extended disk of M83

183   0   0.0 ( 0 )
 Added by Fabio Bresolin
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have obtained deep multi-object optical spectra of 49 HII regions in the outer disk of the spiral galaxy M83 (=NGC 5236) with the FORS2 spectrograph at the Very Large Telescope. The targets span the range in galactocentric distance between 0.64 and 2.64 times the R25 isophotal radius (5.4-22.3 kpc), and 31 of them are located at R>R25, thus belonging to the extreme outer disk of the galaxy, populated by UV complexes revealed recently by the GALEX satellite. In order to derive the nebular chemical abundances, we apply several diagnostics of the oxygen abundance, including R23, [NII]/[OII] and the [OIII]4363 auroral line, which was detected in four HII regions. We find that, while inwards of the optical edge the O/H ratio follows the radial gradient known from previous investigations, the outer abundance trend flattens out to an approximately constant value. The latter varies, according to the adopted diagnostic, between 12+log(O/H)=8.2 and 12+log(O/H)=8.6 (i.e. from approximately 1/3 the solar oxygen abundance to nearly the solar value). An abrupt discontinuity in the radial oxygen abundance trend is also detected near the optical edge of the disk. These results are tentatively linked to the flat gas surface density in the outskirts of the galaxy, the relatively unevolved state of the extended disk of M83, and the redistribution of chemically enriched gas following a past galaxy encounter.



rate research

Read More

100 - Sarah M. Bruzzese 2019
Using Hubble Space Telescope ACS/WFC data we present the photometry and spatial distribution of resolved stellar populations of four fields within the extended ultraviolet disk (XUV disk) of M83. These observations show a clumpy distribution of main-sequence stars and a mostly smooth distribution of red giant branch stars. We constrain the upper-end of the initial mass function (IMF) in the outer disk using the detected population of main-sequence stars and an assumed constant star formation rate (SFR) over the last 300 Myr. By comparing the observed main-sequence luminosity function to simulations, we determine the best-fitting IMF to have a power law slope $alpha=-2.35 pm 0.3$ and an upper-mass limit $rm M_{u}=25_{-3}^{+17} , M_odot$. This IMF is consistent with the observed H$alpha$ emission, which we use to provide additional constraints on the IMF. We explore the influence of deviations from the constant SFR assumption, finding that our IMF conclusions are robust against all but strong recent variations in SFR, but these are excluded by causality arguments. These results, along with our similar studies of other nearby galaxies, indicate that some XUV disks are deficient in high-mass stars compared to a Kroupa IMF. There are over one hundred galaxies within 5 Mpc, many already observed with HST, thus allowing a more comprehensive investigation of the IMF, and how it varies, using the techniques developed here.
We study the evolution of oxygen abundance radial gradients as a function of time for the Milky Way Galaxy obtained with our {sc Mulchem} chemical evolution model. We review the recent data of abundances for different objects observed in our Galactic disc. We analyse with our models the role of the growth of the stellar disc, as well as the effect of infall rate and star formation prescriptions, or the pre-enrichment of the infall gas, on the time evolution of the oxygen abundance radial distribution. We compute the radial gradient of abundances within the {sl disk}, and its corresponding evolution, taking into account the disk growth along time. We compare our predictions with the data compilation, showing a good agreement. Our models predict a very smooth evolution when the radial gradient is measured within the optical disc with a slight flattening of the gradient from $sim -0.057$,dex,kpc$^{-1}$ at $z=4$ until values around $sim -0.015$,dex,kpc$^{-1}$ at $z=1$ and basically the same gradient until the present, with small differences between models. Moreover, some models show a steepening at the last times, from $z=1$ until $z=0$ in agreement with data which give a variation of the gradient in a range from $-0.02$ to $-0.04$,de,kpc$^{-1}$ from $t=10$,Gyr until now. The gradient measured as a function of the normalized radius $R/R_{rm eff}$ is in good agreement with findings by CALIFA and MUSE, and its evolution with redshift falls within the error bars of cosmological simulations.
We examine the possible dependence of the radial oxygen abundance distribution on non-axisymmetrical structures (bar/spirals) and other macroscopic parameters such as the mass, the optical radius R25, the color g-r, and the surface brightness of the galaxy. A sample of disk galaxies from the CALIFA DR3 is considered. We adopted the Fourier amplitude A2 of the surface brightness as a quantitative characteristic of the strength of non-axisymmetric structures in a galactic disk, in addition to the commonly used morphologic division for A, AB, and B types based on the Hubble classification. To distinguish changes in local oxygen abundance caused by the non-axisymmetrical structures, the multiparametric mass--metallicity relation was constructed as a function of parameters such as the bar/spiral pattern strength, the disk size, color index g-r in the SDSS bands, and central surface brightness of the disk. The gas-phase oxygen abundance gradient is determined by using the R calibration. We find that there is no significant impact of the non-axisymmetric structures such as a bar and/or spiral patterns on the local oxygen abundance and radial oxygen abundance gradient of disk galaxies. Galaxies with higher mass, however, exhibit flatter oxygen abundance gradients in units of dex/kpc, but this effect is significantly less prominent for the oxygen abundance gradients in units of dex/R25 and almost disappears when the inner parts are avoided. We show that the oxygen abundance in the central part of the galaxy depends neither on the optical radius R25 nor on the color g-r or the surface brightness of the galaxy. Instead, outside the central part of the galaxy, the oxygen abundance increases with g-r value and central surface brightness of the disk.
The nature of the metallicity gradient inside the solar circle (R_GC < 8 kpc) is poorly understood, but studies of Cepheids and a small sample of open clusters suggest that it steepens in the inner disk. We investigate the metallicity gradient of the inner disk using a sample of inner disk open clusters that is three times larger than has previously been studied in the literature to better characterize the gradient in this part of the disk. We used the Gaia-ESO Survey (GES) [Fe/H] values and stellar parameters for stars in 12 open clusters in the inner disk from GES-UVES data. Cluster mean [Fe/H] values were determined based on a membership analysis for each cluster. Where necessary, distances and ages to clusters were determined via comparison to theoretical isochrones. The GES open clusters exhibit a radial metallicity gradient of -0.10+-0.02 dex/kpc, consistent with the gradient measured by other literature studies of field red giant stars and open clusters in the range R_GC ~ 6-12 kpc. We also measure a trend of increasing [Fe/H] with increasing cluster age, as has also been found in the literature. We find no evidence for a steepening of the inner disk metallicity gradient inside the solar circle as earlier studies indicated. The age-metallicity relation shown by the clusters is consistent with that predicted by chemical evolution models that include the effects of radial migration, but a more detailed comparison between cluster observations and models would be premature.
Context. The distribution of elements in galaxies forms an important diagnostic tool to characterize the systems formation and evolution. This tool is however complex to use in practice, as galaxies are subject to a range of simultaneous physical processes active from pc to kpc scales. This renders observations of the full optical extent of galaxies down to sub-kpc scales essential. Aims. Using the WiFeS integral field spectrograph, we previously detected abrupt and localized variations in the gas-phase oxygen abundance of the spiral galaxy HCG91c. Here, we follow-up on these observations to map HCG91cs disk out to ~2Re at a resolution of 600pc, and characterize the non-radial variations of the gas-phase oxygen abundance in the system. Methods. We obtained deep MUSE observations of the target under ~0.6 arcsec seeing conditions. We perform both a spaxel-based and aperture-based analysis of the data to map the spatial variations of 12+log(O/H) across the disk of the galaxy. Results. We confirm the presence of rapid variations of the oxygen abundance across the entire extent of the galaxy previously detected with WiFeS, for all azimuths and radii. The variations can be separated in two categories: a) localized and associated with individual HII regions, and b) extended over kpc scales, and occurring at the boundaries of the spiral structures in the galaxy. Conclusions. Our MUSE observations suggest that the enrichment of the interstellar medium in HGC91c has proceeded preferentially along spiral structures, and less efficiently across them. Our dataset highlights the importance of distinguishing individual star-forming regions down to scales of a few 100pc when using integral field spectrographs to spatially resolve the distribution of oxygen abundances in a given system, and accurately characterize azimuthal variations and intrinsic scatter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا