Do you want to publish a course? Click here

Eclipsing binary stars in the Large Magellanic Cloud. Results from the EROS-2, OGLE and VMC surveys

129   0   0.0 ( 0 )
 Added by Tatiana Muraveva
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a catalogue of 1768 eclipsing binary stars (EBs) detected in the Large Magellanic Cloud (LMC) by the second generation of the EROS survey (hereinafter EROS-2); 493 of them are new discoveries located in outer regions (out of the central bar) of the LMC. These sources were originally included in a list of candidate classical Cepheids (CCs) extracted from the EROS-2 catalogue on the basis of the period (0.89 $<P_{EROS}<$15.85 days) versus luminosity ($13.39 < langle B_{EROS}rangle<17.82$ mag) diagram. After visual inspection of the light curves we reclassified them as eclipsing binaries. They have blue colours ($B_{EROS} - R_{EROS} < $ 0.2 mag) hence we classed them as hot eclipsing binaries (HEBs) containing hot massive components: main sequence (MS) stars or blue giants. We present $K_{rm s}$-band light curves for 999 binaries from our sample that have a counterpart in the VISTA near-infrared ESO public survey of the Magellanic Clouds system (VMC). We provide spectral classifications of 13 HEBs with existing spectroscopy. We divided our sample into contact-like binaries and detached/semi-detached systems based on both visual inspection and the parameters of the Fourier decomposition of the light curves and analysed the period-luminosity ($PL$) relations of the contact-like systems using the $R_{EROS}$ and $K_{rm s}$ magnitudes at maximum light. The contact-like binaries in our sample do not follow $PL$ relations. We analysed the sample of contact binaries from the OGLE III catalogue and confirmed that $PL_I$ and $PL_{K_{rm s}}$ sequences are defined only by eclipsing binaries containing a red giant component.



rate research

Read More

We describe variable stars found in the data collected during the OGLE-III Shallow Survey covering the I-band magnitude range from 9.7 mag to 14.5 mag. The main result is the extension of period--luminosity relations for Cepheids up to 134 days. We also detected 82 binary systems and 110 long-period variables not present in the main OGLE catalogs. Additionally 558 objects were selected as candidates for miscellaneous variables.
We present an analysis of a new detached eclipsing binary, OGLE-LMC-ECL-25658, in the Large Magellanic Cloud. The system consists of two late G-type giant stars on an eccentric orbit and orbital period of ~200 days. The system shows total eclipses and the components have similar temperatures, making it ideal for a precise distance determination. Using multi-color photometric and high resolution spectroscopic data, we have performed an analysis of light and radial velocity curves simultaneously using the Wilson Devinney code. We derived orbital and physical parameters of the binary with a high precision of < 1 %. The masses and surface metallicities of the components are virtually the same and equal to 2.23 +/- 0.02 M_sun and [Fe/H] = -0.63 +/- 0.10 dex. However their radii and rates of rotation show a distinct trace of differential stellar evolution. The distance to the system was calculated using an infrared calibration between V-band surface brightness and (V-K) color, leading to a distance modulus of (m-M) = 18.452 +/- 0.023 (statistical) +/- 0.046 (systematic). Because OGLE-LMC-ECL-25658 is located relatively far from the LMC barycenter we applied a geometrical correction for its position in the LMC disc using the van der Marel et al. model of the LMC. The resulting barycenter distance to the galaxy is d_LMC = 50.30 +/- 0.53 (stat.) kpc, and is in perfect agreement with the earlier result of Pietrzynski et al.(2013).
We present a detailed study of the classical Cepheid in the double-lined, highly eccentric eclipsing binary system OGLE-LMC562.05.9009. The Cepheid is a fundamental mode pulsator with a period of 2.988 days. The orbital period of the system is 1550 days. Using spectroscopic data from three 4-8-m telescopes and photometry spanning 22 years, we were able to derive the dynamical masses and radii of both stars with exquisite accuracy. Both stars in the system are very similar in mass, radius and color, but the companion is a stable, non-pulsating star. The Cepheid is slightly more massive and bigger (M_1 = 3.70 +/- 0.03M_sun, R_1 = 28.6 +/- 0.2R_sun) than its companion (M_2 = 3.60 +/- 0.03M_sun, R_2 = 26.6 +/- 0.2R_sun). Within the observational uncertainties both stars have the same effective temperature of 6030 +/- 150K. Evolutionary tracks place both stars inside the classical Cepheid instability strip, but it is likely that future improved temperature estimates will move the stable giant companion just beyond the red edge of the instability strip. Within current observational and theoretical uncertainties, both stars fit on a 205 Myr isochrone arguing for their common age. From our model, we determine a value of the projection factor of p = 1.37 +/- 0.07 for the Cepheid in the OGLE-LMC562.05.9009 system. This is the second Cepheid for which we could measure its p-factor with high precision directly from the analysis of an eclipsing binary system, which represents an important contribution towards a better calibration of Baade-Wesselink methods of distance determination for Cepheids.
Symbiotic stars are long-orbital-period interacting-binaries characterized by extended emission over the whole electromagnetic range and by complex photometric and spectroscopic variability. In this paper, the first of a series, we present OGLE light curves of all the confirmed symbiotic stars in the Large Magellanic Cloud, with one exception. By careful visual inspection and combined time-series analysis techniques, we investigate for the first time in a systematic way the photometric properties of these astrophysical objects, trying in particular to distinguish the nature of the cool component (e.g., Semi-Regular Variable vs. OGLE Small-Amplitude Red Giant), to provide its first-order pulsational ephemerides, and to link all this information with the physical parameters of the binary system as a whole. Among the most interesting results, there is the discovery of a 20-year-long steady fading of Sanduleaks star, a peculiar symbiotic star known to produce the largest stellar jet ever discovered. We discuss by means of direct examples the crucial need for long-term multi-band observations to get a real understanding of symbiotic and other interacting binary stars. We eventually introduce BOMBOLO, a multi-band simultaneous imager for the SOAR 4m Telescope, whose design and construction we are currently leading.
210 - M. Marconi , R. Molinaro , G. Bono 2013
We performed a new and accurate fit of light and radial velocity curves of the Large Magellanic Cloud (LMC) Cepheid --OGLE-LMC-CEP-0227-- belonging to a detached double-lined eclipsing binary system. We computed several sets of nonlinear, convective models covering a broad range in stellar mass, effective temperature and in chemical composition. The comparison between theory and observations indicates that current theoretical framework accounts for luminosity --V and I band-- and radial velocity variations over the entire pulsation cycle. Predicted pulsation mass --M=4.14+-0.06 Mo-- and mean effective temperature --Te=6100+-50 K-- do agree with observed estimates with an accuracy better than 1 sigma. The same outcome applies, on average, to the luminosity amplitudes and to the mean radius. We find that the best fit solution requires a chemical composition that is more metal--poor than typical LMC Cepheids (Z=0.004 vs 0.008) and slightly helium enhanced (Y=0.27 vs 0.25), but the sensitivity to He abundance is quite limited. Finally, the best fit model reddening --E(V-I)=0.171+-0.015 mag-- and the true distance modulus corrected for the barycenter of the LMC --mu_{0,LMC}=18.50+-0.02+-0.10 (syst) mag--, agree quite well with similar estimates in the recent literature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا