Do you want to publish a course? Click here

Cu/Ag EAM Potential Optimized for Heteroepitaxial Diffusion from ab initio Data

254   0   0.0 ( 0 )
 Added by Dallas Trinkle
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(111) by fitting to ab initio data. The fitting database consists of DFT calculations of Cu monomers and dimers on Ag(111), specifically their relative energies, adatom heights, and dimer separations. We start from the Mishin Cu-Ag EAM potential and first modify the Cu-Ag pair potential to match the FCC/HCP site energy difference then include Cu-Cu pair potential optimization for the entire database. The optimized EAM potential reproduce DFT monomer and dimer relative energies and geometries correctly. In trimer calculations, the potential produces the DFT relative energy between FCC and HCP trimers, though a different ground state is predicted. We use the optimized potential to calculate diffusion barriers for Cu monomers, dimers, and trimers. The predicted monomer barrier is the same as DFT, while experimental barriers for monomers and dimers are both lower than predicted here. We attribute the difference with experiment to the overestimation of surface adsorption energies by DFT and a simple correction is presented. Our results show that the optimized Cu-Ag EAM can be applied in the study of larger Cu islands on Ag(111).



rate research

Read More

Electronic structure of layered LiNiO2 has been controversial despite numerous theoretical and experimental reports regarding its nature. We investigate the charge densities, lithium intercalation potentials and Li diffusion barrier energies of LixNiO2 (0.0 < x < 1.0) system using a truly ab-initio method, diffusion quantum Monte Carlo (DMC). We compare the charge densities from DMC and density functional theory (DFT) and show that local and semi-local DFT functionals yield spin polarization densities with incorrect sign on the oxygen atoms. SCAN functional and Hubbard-U correction improves the polarization density around Ni and O atoms, resulting in smaller deviations from the DMC densities. DMC accurately captures the p-d hybridization between the Ni-O atoms, yielding accurate lithium intercalation voltages, polarization densities and reaction barriers.
74 - J. Xi , G. Bokas , L.E. Schultz 2020
The icosahedral-like polyhedral fraction (ICO-like fraction) has been studied as a criterion for predicting the glass-forming ability of bulk ternary metallic glasses, Al90Sm8X2 (X = Al (binary), Cu, Ag, Au), using ab initio molecular dynamics (AIMD) simulations. We found that the ICO-like fraction can be determined with adequate precision to explore correlations with AIMD simulations. We then demonstrated that ICO-like fraction correlates with the critical cooling rate, which is a widely used intrinsic measure of glass forming ability. These results suggest that the ICO-like fraction from AIMD simulations may offer a useful guide for searching and screening for good glass formers.
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
198 - A. W. Signor , Henry H. Wu , 2009
Scanning tunneling microscopy combined with molecular dynamics simulations reveal a dislocation-mediated island diffusion mechanism for Cu on Ag(111), a highly mismatched system. Cluster motion is tracked with atomic precision at multiple temperatures and diffusion barriers and prefactors are determined from direct measurements of hop rates. The non-monotonic size dependence of the diffusion barrier is in good agreement with simulations and can lead to enhanced mass transport upon coarsening, in surprising contrast to the traditional island diffusion models where diffusivity reduces with cluster size.
224 - Henry H. Wu , A. W. Signor , 2009
Lattice mismatch of Cu on Ag(111) produces fast diffusion for special magic sizes of islands. A size- and shape-dependent reptation mechanism is responsible for low diffusion barriers. Initiating the reptation mechanism requires a suitable island shape, a property not considered in previous studies of 1D island chains and 2D closed-shell islands. Shape determines the dominant diffusion mechanism and leads to multiple clearly identifiable magic-size trends for diffusion depending on the number of atoms whose bonds are shortened during diffusion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا