Do you want to publish a course? Click here

On L-infinity morphisms of cyclic chains

112   0   0.0 ( 0 )
 Added by Giovanni Felder
 Publication date 2008
  fields
and research's language is English




Ask ChatGPT about the research

Recently the first two authors constructed an L-infinity morphism using the S^1-equivariant version of the Poisson Sigma Model (PSM). Its role in deformation quantization was not entirely clear. We give here a good interpretation and show that the resulting formality statement is equivalent to formality on cyclic chains as conjectured by Tsygan and proved recently by several authors.



rate research

Read More

We construct four families of Artin-Schelter regular algebras of global dimension four. Under some generic conditions, this is a complete list of Artin-Schelter regular algebras of global dimension four that are generated by two elements of degree 1. These algebras are also strongly noetherian, Auslander regular and Cohen-Macaulay. One of the main tools is Kellers higher-multiplication theorem on A-infinity Ext-algebras.
395 - Ye-Lin Ou , Tiffany Troutman , 2011
We propose a new notion called emph{infinity-harmonic maps}between Riemannain manifolds. These are natural generalizations of the well known notion of infinity harmonic functions and are also the limiting case of $p$% -harmonic maps as $pto infty $. Infinity harmoncity appears in many familiar contexts. For example, metric projection onto the orbit of an isometric group action from a tubular neighborhood is infinity harmonic. Unfortunately, infinity-harmonicity is not preserved under composition. Those infinity harmonic maps that always preserve infinity harmonicity under pull back are called infinity harmonic morphisms. We show that infinity harmonic morphisms are precisely horizontally homothetic mas. Many example of infinity-harmonic maps are given, including some very important and well-known classes of maps between Riemannian manifolds.
We continue the first and second authors study of $q$-commutative power series rings $R=k_q[[x_1,ldots,x_n]]$ and Laurent series rings $L=k_q[[x^{pm 1}_1,ldots,x^{pm 1}_n]]$, specializing to the case in which the commutation parameters $q_{ij}$ are all roots of unity. In this setting, $R$ is a PI algebra, and we can apply results of De Concini, Kac, and Procesi to show that $L$ is an Azumaya algebra whose degree can be inferred from the $q_{ij}$. Our main result establishes an exact criterion (dependent on the $q_{ij}$) for determining when the centers of $L$ and $R$ are commutative Laurent series and commutative power series rings, respectively. In the event this criterion is satisfied, it follows that $L$ is a unique factorization ring in the sense of Chatters and Jordan, and it further follows, by results of Dumas, Launois, Lenagan, and Rigal, that $R$ is a unique factorization ring. We thus produce new examples of complete, local, noetherian, noncommutative, unique factorization rings (that are PI domains).
We construct comparison morphisms between two well-known projective resolutions of a monomial algebra $A$: the bar resolution and Bardzells resolution; the first one is used to define the cup product and the Lie bracket on the Hochschild cohomology $HH^*(A)$ and the second one has been shown to be an efficient tool for computations of these cohomology groups. The constructed comparison morphisms allow us to show that the cup product restricted to even degrees of the Hochschild cohomology has a very simple description. Moreover, for $A=k Q/I$ a monomial algebra such that $dim_k e_i A e_j = 1$ whenever there exists an arrow $alpha: i to j in Q_1$, we describe the Lie action of the Lie algebra $HH^1(A)$ on $HH^{ast}(A)$.
139 - Fernando Muro 2015
We extend the Bousfield-Kan spectral sequence for the computation of the homotopy groups of the space of minimal A-infinity algebra structures on a graded projective module. We use the new part to define obstructions to the extension of truncated minimal A-infinity algebra structures. We also consider the Bousfield-Kan spectral sequence for the moduli space of A-infinity algebras. We compute up to the second page, terms and differentials, of these spectral sequences in terms of Hochschild cohomology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا