We construct four families of Artin-Schelter regular algebras of global dimension four. Under some generic conditions, this is a complete list of Artin-Schelter regular algebras of global dimension four that are generated by two elements of degree 1. These algebras are also strongly noetherian, Auslander regular and Cohen-Macaulay. One of the main tools is Kellers higher-multiplication theorem on A-infinity Ext-algebras.
Let A be a connected graded algebra and let E denote its Ext-algebra. There is a natural A-infinity algebra structure on E, and we prove that this structure is mainly determined by the relations of A. In particular, the coefficients of the A-infinity products m_n restricted to the tensor powers of Ext^1 give the coefficients of the relations of A. We also relate the m_ns to Massey products.
We investigate a method of construction of central deformations of associative algebras, which we call centrification. We prove some general results in the case of Hopf algebras and provide several examples.
The notion of a derived A-infinity algebra, considered by Sagave, is a generalization of the classical notion of A-infinity algebra, relevant to the case where one works over a commutative ring rather than a field. We initiate a study of the homotopy theory of these algebras, by introducing a hierarchy of notions of homotopy between the morphisms of such algebras. We define r-homotopy, for non-negative integers r, in such a way that r-homotopy equivalences underlie E_r-quasi-isomorphisms, defined via an associated spectral sequence. We study the special case of twisted complexes (also known as multicomplexes) first since it is of independent interest and this simpler case clearly exemplifies the structure we study. We also give two new interpretations of derived A-infinity algebras as A-infinity algebras in twisted complexes and as A-infinity algebras in split filtered cochain complexes.
In this paper we determine all partial actions and partial coactions of Taft and Nichols Hopf algebras on their base fields. Furthermore, we prove that all such partial (co)actions are symmetric.
We prove that free pre-Lie algebras, when considered as Lie algebras, are free. Working in the category of S-modules, we define a natural filtration on the space of generators. We also relate the symmetric group action on generators with the structure of the anticyclic PreLie operad.