No Arabic abstract
We consider (n+1)--dimensional, stationary, asymptotically flat, or Kaluza-Klein asymptotically flat black holes, with an abelian $s$--dimensional subgroup of the isometry group satisfying an orthogonal integrability condition. Under suitable regularity conditions we prove that the area of the group orbits is positive on the domain of outer communications, vanishing only on its boundary and on the symmetry axis. We further show that the orbits of the connected component of the isometry group are timelike throughout the domain of outer communications. Those results provide a starting point for the classification of such black holes. Finally, we show non-existence of zeros of static Killing vectors on degenerate Killing horizons, as needed for the generalisation of the static no-hair theorem to higher dimensions.
We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in $d > 4$, but that hyperspherically symmetric black holes can be constructed numerically in generalized Einstein-Yang-Mills models. 5-dimensional black strings with horizon topology S^2 x S^1 are also discussed. These are so-called undeformed and deformed non-abelian black strings, which are translationally invariant and correspond to 4-dimensional non-abelian black holes trivially extended into one extra dimensions. The fact that black strings can be deformed, i.e. axially symmetric for constant values of the extra coordinate is a new feature as compared to black string solutions of Einstein (-Maxwell) theory. It is argued that these non-abelian black strings are thermodynamically unstable.
In this paper,we have studied phase transitions of higher dimensional charge black hole with spherical symmetry. we calculated the local energy and local temperature, and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters $(Q,Phi)$ of black hole thermodynamic system, in accordance with considering to the state parameters $(P,V)$ of Van der Waals system respectively. we obtain the critical point of black hole thermodynamic system, and find the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime, and is intrinsic property of black hole thermodynamic system.
In this work we calculate the angular eigenvalues of the $(n+4)$-dimensional {it simply} rotating Kerr-(A)dS spheroidal harmonics using the Asymptotic Iteration Method (AIM). We make some comparisons between this method and that of the Continued Fraction Method (CFM) and use the latter to check our results. We also present analytic expressions for the small rotation limit up to $O(c^3)$ with the coefficient of each power up to $O(alpha^2)$, where $c=aomega$ and $alpha=a^2 Lambda$ ($a$ is the angular velocity, $omega$ the frequency and $Lambda$ the cosmological constant).
Here we have developed the general parametrization for spherically symmetric and asymptotically flat black-hole spacetimes in an arbitrary metric theory of gravity. The parametrization is similar in spirit to the parametrized post-Newtonian (PPN) approximation, but valid in the whole space outside the event horizon, including the near horizon region. This generalizes the continued-fraction expansion method in terms of a compact radial coordinate suggested by Rezzolla and Zhidenko [Phys.Rev.D 90 8, 084009 (2014)] for the four-dimensional case. As the first application of our higher-dimensional parametrization we have approximated black-hole solutions of the Einstein-Lovelock theory in various dimensions. This allows one to write down the black-hole solution which depends on many parameters (coupling constants in front of higher curvature terms) in a very compact analytic form, which depends only upon a few parameters of the parametrization. The approximate metric deviates from the exact (but extremely cumbersome) expressions by fractions of one percent even at the first order of the continued-fraction expansion, which is confirmed here by computation of observable quantities, such as quasinormal modes of the black hole.
We present a new family of asymptotically AdS four-dimensional black hole solutions with scalar hair of a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential. For a certain profile of the scalar field we solve the Einstein equations and we determine the scalar potential. Thermodynamically we show that there is a critical temperature below which there is a phase transition of a black hole with hyperbolic horizon to the new hairy black hole configuration.