Do you want to publish a course? Click here

Proposal for a Quantum Test of the Weak Equivalence Principle with Entangled Atomic Species

148   0   0.0 ( 0 )
 Added by Remi Geiger
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an experiment to test the Weak Equivalence Principle (WEP) with a test mass consisting of two entangled atoms of different species. In the proposed experiment, a coherent measurement of the differential gravity acceleration between the two atomic species is considered, by entangling two atom interferometers operating on the two species. The entanglement between the two atoms is heralded at the initial beam splitter of the interferometers through the detection of a single photon emitted by either of the atoms, together with the impossibility of distinguishing which atom emitted the photon. In contrast to current and proposed tests of the WEP, our proposal explores the validity of the WEP in a regime where the two particles involved in the differential gravity acceleration measurement are not classically independent, but entangled. We propose an experimental implementation using $^{85}$Rb and $^{87}$Rb atoms entangled by a vacuum stimulated rapid adiabatic passage protocol implemented in a high finesse optical cavity. We show that an accuracy below $10^{-7}$ on the Eotvos parameter can be achieved.

rate research

Read More

We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter wave, microwave, optical, and Mossbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the $10^{-6}$ level.
General Relativity is today the best theory of gravity addressing a wide range of phenomena. Our understanding of physical laws, from cosmology to local scales, cannot be properly formulated without taking into account it. It is based on one of the most fundamental principles of Nature, the Equivalence Principle, which represents the core of the Einstein theory of gravity. The confirmation of its validity at different scales and in different contexts represents one of the main challenges of modern physics both from the theoretical and the experimental points of view. A major issue related to this principle is the fact that we actually do not know if it is valid at quantum level. Furthermore, recent progress on relativistic theories of gravity have to take into account new issues like Dark Matter and Dark Energy, as well as the validity of fundamental principles like local Lorentz and position invariance. Experiments allow to set stringent constraints on well established symmetry laws, on the physics beyond the Standard Model of particles and interactions, and on General Relativity and its possible extensions. In this review, we discuss precision tests of gravity in General Relativity and alternative theories and their relation with the Equivalence Principle. In the first part, we discuss the Einstein Equivalence Principle according to its weak and strong formulation. We recall some basic topics of General Relativity and the necessity of its extension. Some models of modified gravity are presented in some details. The second part of the paper is devoted to the experimental tests of the Equivalence Principle in its weak formulation. We present the results and methods used in high-precision experiments, and discuss the potential and prospects for future experimental tests.
We review matter wave and clock comparison tests of the gravitational redshift. To elucidate their relationship to tests of the universality of free fall (UFF), we define scenarios wherein redshift violations are coupled to violations of UFF (type II), or independent of UFF violations (type III), respectively. Clock comparisons and atom interferometers are sensitive to similar effects in type II and precisely the same effects in type III scenarios, although type III violations remain poorly constrained. Finally, we describe the Geodesic Explorer, a conceptual spaceborne atom interferometer that will test the gravitational redshift with an accuracy 5 orders of magnitude better than current terrestrial redshift experiments for type II scenarios and 12 orders of magnitude better for type III.
Matter-wave interferometers utilizing different isotopes or chemical elements intrinsically have different sensitivities, and the analysis tools available until now are insufficient for accurately estimating the atomic phase difference under many experimental conditions. In this work, we describe and demonstrate two new methods for extracting the differential phase between dual-species atom interferometers for precise tests of the weak equivalence principle. The first method is a generalized Bayesian analysis, which uses knowledge of the system noise to estimate the differential phase based on a statistical model. The second method utilizes a mechanical accelerometer to reconstruct single-sensor interference fringes based on measurements of the vibration-induced phase. An improved ellipse-fitting algorithm is also implemented as a third method for comparison. These analysis tools are investigated using both numerical simulations and experimental data from simultaneous $^{87}$Rb and $^{39}$K interferometers, and both new techniques are shown to produce bias-free estimates of the differential phase. We also report observations of phase correlations between atom interferometers composed of different chemical species. This correlation enables us to reject common-mode vibration noise by a factor of 730, and to make preliminary tests of the weak equivalence principle with a sensitivity of $1.6 times 10^{-6}$ per measurement with an interrogation time of $T = 10$ ms. We study the level of vibration rejection by varying the temporal overlap between interferometers in a symmetric timing sequence. Finally, we discuss the limitations of the new analysis methods for future applications of differential atom interferometry.
MICROSCOPEs space test of the weak equivalence principle (WEP) is based on the minute measurement of the difference of accelerations experienced by two test masses as they orbit the Earth. A detection of a violation of the WEP would appear at a well-known frequency $f_{rm EP}$ depending on the satellites orbital and spinning frequencies. Consequently, the experiment was optimised to miminise systematic errors at $f_{rm EP}$. Glitches are short-lived events visible in the test masses measured acceleration, most likely originating in cracks of the satellites coating. In this paper, we characterise their shape and time distribution. Although intrinsically random, their time of arrival distribution is modulated by the orbital and spinning periods. They have an impact on the WEP test that must be quantified. However, the data available prevents us from unequivocally tackling this task. We show that glitches affect the test of the WEP, up to an a priori unknown level. Discarding the perturbed data is thus the best way to reduce their effect.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا