Do you want to publish a course? Click here

Combined theory of two- and four- component complete orthonormal sets of spinor wave functions and Slater type spinor orbitals in position, momentum and four-dimensional spaces

208   0   0.0 ( 0 )
 Added by Israfil Guseinov
 Publication date 2008
  fields Physics
and research's language is English
 Authors I.I.Guseinov




Ask ChatGPT about the research

By the use of complete orthonormal sets of nonrelativistic scalar orbitals introduced by the author in previous papers the new complete orthonormal basis sets for two- and four-component spinor wave functions, and Slater spinor orbitals useful in the quantum-mechanical description of the spin- 1/2 particles by the quasirelativistic and Diracs relativistic equations are established in position, momentum and four-dimensional spaces. These function sets are expressed through the corresponding nonrelativistic orbitals. The analytical formulas for overlap integrals over four-component relativistic Slater spinor orbitals with the same screening constants in position space are also derived. The relations obtained in this study can be useful in the study of different problems arising in the quasirelativistic and relativistic quantum mechanics when the position, momentum and four dimensional spaces are employed.



rate research

Read More

122 - I.I.Guseinov 2008
By the use of complete orthonormal sets of nonrelativistic scalar orbitals introduced by the author in previous papers the new complete orthonormal basis sets for two-and four-component spinor wave functions, and Slater spinor orbitals useful in the quantum-mechanical description of the spin - 1/2 particles by the quasirelativistic and relativistic equations are established in position, momentum and four-dimensional spaces. These function sets are expressed through the corresponding nonrelativistic orbitals. The analytical formulas for overlap integrals over four component relativistic Slater spinor orbitals with the same screening constants in position space are also derived. The relations obtained in this study can be useful in the study of different problems arising in the quasirelativistic and relativistic quantum mechanics when the position, momentum and four dimensional spaces are employed.
114 - I.I.Guseinov 2010
Using the complete orthonormal sets of radial parts of nonrelativitistic exponential type orbitals (2,1, 0, 1, 2, ...) and spinor type tensor spherical harmonics of rank s the new formulae for the 2(2s+1)-component relativistic spinors useful in the quantum mechanical description of the arbitrary half-integral spin particles by the generalized Dirac equation introduced by the author are established in position, momentum and four-dimensional spaces, where 1/ 2, 3 / 2, 5 / 2, ... s = . These spinors are complete without the inclusion of the continuum. The 2(2s+1)component spinors obtained are reduced to the independent sets of two-component spinors defined as a product of complete orthonormal sets of radial parts of orbitals and twocomponent spinor type tensor spherical harmonics. We notice that the new idea presented in this work is the unified treatment of half-integral spin and scalar particles in position, momentum and four-dimensional spaces. Relations presented in this study can be useful in the linear combination of atomic orbitals approximation for the solution of different problems arising in the relativistic quantum mechanics when the orthonormal basis sets of relativistic exponential type spinor wave functions and Slater type spinor orbitals in position, momentum and four -dimensional spaces are employed.
471 - I.I.Guseinov 2010
The analytical relations in position, momentum and four-dimensional spaces are established for the expansion and one-range addition theorems of relativistic complete orthonormal sets of exponential type spinor wave functions and Slater spinor orbitals of arbitrary half-integral spin. These theorems are expressed through the corresponding nonrelativistic expansion and one-range addition theorems of the spin-0 particles introduced by the author. The expansion and one-range addition theorems derived are especially useful for the computation of multicenter integrals over exponential type spinor orbitals arising in the generalized relativistic Dirac-Hartree-Fock-Roothaan theory when the position, momentum and four-dimensional spaces are employed.
133 - Shichao Sun 2021
Four-component Dirac Hartree--Fock is an accurate mean-field method for treating molecular systems where relativistic effects are important. However, the computational cost and complexity of the two-electron interaction makes this method less common, even though we can consider the Dirac Hartree--Fock Hamiltonian the ground truth of electronic structure, barring explicit quantum-electrodynamical effects. Being able to calculate these effects is then vital to the design of lower scaling methods for accurate predictions in computational spectroscopy and properties of heavy element complexes that must include relativistic effects for even qualitative accuracy. In this work, we present a Pauli quaternion formalism of maximal component- and spin-separation for computing the Dirac-Coulomb-Gaunt Hartree--Fock ground state, with a minimal floating-point-operation count algorithm. This approach also allows one to explicitly separate different spin physics from the two-body interactions, such as spin-free, spin-orbit, and the spin-spin contributions. Additionally, we use this formalism to examine relativistic trends in the periodic table, and analyze the basis set dependence of atomic gold and gold dimer systems.
107 - I. I. Guseinov 2012
The 2(2s+1)-component relativistic basis spinors for the arbitrary spin particles are established in position, momentum and four-dimensional spaces, where s=0,1 / 2,1, 3 / 2, 2, ... . These spinors for integral- and half-integral spins are reduced to the independent sets of one- and twocomponent spinors, respectively. Relations presented in this study can be useful in the linear combination of atomic orbitals approximation for the solution of generalized Dirac equation of arbitrary spin particles introduced by the author when the orthogonal basis sets of relativistic exponential type spinor wave functions and Slater type spinor orbitals in position, momentum and four -dimensional spaces are employed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا