No Arabic abstract
We show that a generalized Landau theory for the smectic A and C phases exhibits a biaxiality induced AC tricritical point. Proximity to this tricritical point depends on the degree of orientational order in the system; for sufficiently large orientational order the AC transition is 3D XY-like, while for sufficiently small orientational order, it is either tricritical or 1st order. We investigate each of the three types of AC transitions near tricriticality and show that for each type of transition, small orientational order implies de Vries behavior in the layer spacing, an unusually small layer contraction. This result is consistent with, and can be understood in terms of, the diffuse cone model of de Vries. Additionally, we show that birefringence grows upon entry to the C phase. For a continuous transition, this growth is more rapid the closer the transition is to tricriticality. Our model also predicts the possibility of a nonmontonic temperature dependence of birefringence.
Using a generalized Landau theory involving orientational, layering, tilt, and biaxial order parameters we analyze the smectic-A* and smectic-C* (Sm-A* -- Sm-C*) transition, showing that a combination of small orientational order and large layering order leads to Sm-A* -- Sm-C* transitions that are either continuous and close to tricriticality or first order. The model predicts that in such systems the increase in birefringence upon entry to the Sm-C* phase will be especially rapid. It also predicts that the change in layer spacing at the Sm-A* -- Sm-C* transition will be proportional to the orientational order. These are two hallmarks of Sm-A* -- Sm-C* transitions in de Vries materials. We analyze the electroclinic effect in the Sm-A* phase and show that as a result of the zero-field Sm-A* -- Sm-C* transition being either continuous and close to tricriticality or first order (i.e for systems with a combination of weak orientational order and strong layering order) the electroclinic response of the tilt will be unusually strong. Additionally, we investigate the associated electrically induced change in birefringence and layer spacing, demonstrating de Vries behavior for each, i.e. an unusually large increase in birefringence and an unusually small layer contraction. Both the induced change in birefringence and layer spacing are shown to scale quadratically with the induced tilt angle.
We develop a theory of Smectic A - Smectic C phase transition with anomalously weak smectic layer contraction. We construct a phenomenological description of this transition by generalizing the Chen-Lubensky model. Using a mean-field molecular model, we demonstrate that a relatively simple interaction potential suffices to describe the transition. The theoretical results are in excellent agreement with experimental data.
We study theoretically the effect of an external field on the nematic-smectic-A (NA) transition close to the tricritical point, where fluctuation effects govern the qualitative behavior of the transition. An external field suppresses nematic director fluctuations, by making them massive. For a fluctuation-driven first-order transition, we show that an external field can drive the transition second-order. In an appropriate liquid crystal system, we predict the required magnetic field to be of order 10 T. The equivalent electric field is of order $1 V/mu m$.
Experimental and theoretical studies of a smectic-hexatic transition in freely suspended films of 54COOBC compound are presented. X-ray investigations revealed a discontinuous first-order transition into the hexatic phase. Moreover, the temperature region of two phase coexistence near the phase transition point diminishes with film thickness. The coexistence width dependence on film thickness was derived on the basis of the Landau mean-field theory in the vicinity of the tricritical point (TCP). Close to TCP the surface hexatic ordering penetrates anomalously deep into the film interior.
We analyze the surface electroclinic effect (SECE) in a material that exhibits a first order bulk smectic-$A^*$ (Sm-$A^*$) -- smectic-$C^*$ (Sm-$C^*$) transition. The effect of a continuously varying degree of enantiomeric excess on the SECE is also investigated. We show that due to the first order nature of the bulk Sm-$A^*$ -- Sm-$C^*$ transition, the SECE can be unusually strong and that as enantiomeric excess is varied, a jump in surface induced tilt is expected. A theoretical state map, in enantiomeric excess - temperature space, features a critical point which terminates a line of first order discontinuities in the surface induced tilt. This critical point is analogous to that found for the phase diagram (in electric field - temperature space) for the bulk electroclinic effect. Analysis of the decay of the surface induced tilt, as one moves from surface into bulk shows that for sufficiently high surface tilt the decay will exhibit a well defined spatial kink within which it becomes especially rapid. We also propose that the SECE is additionally enhanced by the de Vries nature (i.e. small layer shrinkage at the bulk Sm-A* -- Sm-C* transition) of the material. As such the SECE provides a new means to characterize the de Vries nature of a material. We discuss the implications for using these materials in device applications and propose ways to investigate the predicted features experimentally.